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Magnetic insulation is crucial in the operation of

large pulsed power systems. This phenomena is explored in

the following work. Particular attention is paid to

describing magnetic insulation in realistic pulsed power

systems. A theoretical model is developed that allows one

to produce self consistent magnetically insulated laminar

flows in perturbed cylindrical systems given only the

electron density profile. The theory is checked and

justified by detailed comparisons with results from a

2-dimensional electromagnetic code - MASK.

The procedure followed in the theoretical development

is to use the relativistic Vlasov equation. Ampere's law and

Gauss' law, to obtain a relation between the density profile

and the velocity profile for insulated flows. Given the

density profile and the corresponding derived velocity

profile, a self consistent flow solution is obtained by

means of Maxwell's equations. It is checked by taking a
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special case - corresponding to no perturbations - which

results in the well known Brillouin flow theory.

In addition, a detailed numerical study is undertaken

in which the magnetic insulation threshold for various

pulsed power systems is determined. Particular emphasis is

placed on determining the magnetic insulation threshold of a

pulsed power system employing a plasma erosion opening

switch.

The procedure employed in the computational study is to

vary critical aspects of the pulsed power system and then

note whether magnetic insulation breaks down. The point at

which mangetic insulation breaks down - as a function of

geometry, load impedance, and applied voltage - is the

magnetic insulation Lhreshold for the system. The

computational technique used is a 2-dimensional

electromagnetic particle in cell code. The results of the

study are consistent with basic magnetic insulation theories

in the limited regimes in which they apply.

Results from the work include magnetic insulation

threshold graphs for a variety of systems. These graphs

give clear new insights into the relationships between the

applied voltages, perturbation and load impedances, and

magnetic insulation. In addition, the new magnetic

insulation theory allows one to theoretically predict flow

solutions downstream of a perturbation. Additional research

opportunities are suggested in the conclusions.
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CHAPTER 1

INTRODUCTION

1.1 Concepts of Magnetic Insulation

Magnetic insulation is crucial in the operation of

large pulsed power systems. This applies especially to

systems with electric fields greater than approximately 20

to 50 MV/m [1]; because, explosive electron emission occurs

from surfaces subjected to such fields. These electrons

will short out the system at a rate consistent with the

speed of light without magnetic insulation. Therefore,

insuring magnetic insulation in large pulsed power systems

is a necessity of those in the field and a topic of this

work.

The essence of magnetic insulation is to externally

apply or self-consistently generate magnetic fields that act

perpendicular to the electric fields found in the system in

order to confine the electrons. An example of magnetic

insulation for a self-consistently generated magnetic field

in a coaxial geometry is shown in figure 1. The current

flowing in the system (I a I 'I ) generates a -B field.a e' C

The electric field is in the minus r direction. As a

result, the electrons explosively emitted from the cathode

are pulled by the imposed electric field towards the anode.

However, the magnetic field redirects the electrons back

towards the cathode by means of vxg forces. Therefore, the

electrons W drift in the +z direction while being
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Figure 1. Electron Orbits in Magnetically Insulated Flow.

The primary electron orbits are shown along with the

directions of the anode (I ), cathode (I ) and space
a c

charge (Ie) currents in a cylindrical geometry.
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magnetically insulated away from the anode.

In figure 1. various electron orbit types are shown

[2]. There are common, laminar. curtate and prolate orbits

represented. If the electrons are emitted from the cathode

into a region in which the fields are uniform in z and the

electrons initially have zero velocity, common orbits

result. However, if the electrons are born in regions of

non-uniform fields, prolate, curtate and laminar orbits can

be produced. In many pulsed power systems, prolate, curtate

and laminar orbits dominate because of inherent field

non-uniformities due to unavoidable perturbations in the

magnetically insulated flows.

So there is no confusion, it is important to point out

that there are three different types of magnetically

insulated (cutoff) flows referred to in the literature [3]:

1) self-limited, 2) load-limited, and 3)

constant-flux-limited flows. An example of self-limited

magnetic insulation is given in figure 2a. This figure

shows a power pulse propagating down a long coaxial

transmission line. The current passing from the anode to

the cathode at the pulse front (R2) allows for the

insulation of the line at Rl.

An example of load-limited magnetic insulation is shown

in figure 2b. The current passing through the system is

limited to that which passes through the load which is

responsible for the insulation of region Rl. It is

interesting to note that the current passing through the
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INSULATOR
ANODE R2

RI

CATHODE

a. Self-limited magnetically insulated flow. The current flow

from the anodc to the cathode at the pulse front (R2) allows
for insulation in R1.

INSULATOR

, , RI CATHODE' ' R .(_..

b. Load-limited magnetically insulated flow. The current flow

across R2 (load or diode gap) results in the insulation of
Ri.

INSULATOR
ANODE

RI

"-- CATHODE

c. Constant-flux-limited magnetically insulated flow. A current

from outside the system (I ) is forced through the cathode
and produces a magnetic field of constant flux that insulates

the flow in RI.

Figure 2. Types of Magnetically Insulated Flows.
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load (R2) of figure 2b is always greater than or equal to

the current lost across the pulse head (R2) as shown in

figure 2a (for insulated flows). This means that the

electron flows in load-limited lines are at least as tightly

trapped as electron flows in self-limited flow lines. It is

also interesting to note that if the load impedance of

figure 2b is increased to the point that current begins to

be excluded from the diode region (load,R2), the insulati-n

in RI returns to the self-limited type.

Finally, one sees an example of a constant-flux

magnetically insulated flow in figure 2c. In this case, a

current is forced through the cathode from an outside power

source. This current (I ) produces a magnetic field that

remains constant and is in the minus ; direction. If a

sufficiently large voltage is impressed on the line to cause

emission of electrons, the imposed magnetic field will cause

an W drift and magnetic insulation. However, in such

systems, the currents due to the applied voltage are usually

negligible--unlike the previous two cases. The power levels

are low and the systems are almost always non-relativistic.

This is why an insulating field must be supplied by an

outside source.

In this work, the large pulsed power systems of

interest [4) have relativistic electron flows and

significant self-generated magnetic fields. Also, most of

these systems attempt to insure that all generated currents

pass through the load. For this reason, the following
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research dwells primarily on load-limited magnetic

insulation. To give a little more perspective and to

emphasize the importance of this work a historical summary,

outline of research, the basic physics and the computational

tools involved are presented.

1.2 Historical Summary and Background

The theory of magnetic insulation begins with Hull's

first cartesian, non-relativistic single pnrticle treatment

of magnetron cutoff [5]. Relativistic. self-consistent,

cartesian treatments begin around 1973 when Lovelace and Ott

found a condition governing constant-flux magnetic

insulation of a diode [6]. Also, at about this same time,

Ron, Mondelli, and Rostoker(RMR) developed the

"quasi-laminar flow theory" employing common orbits (see

figure 1) in cartesian coordinates [7]. In the work of RMR,

it is assumed that the total energy and canonical momentum

across the electron sheath are equal to the total energy

(W=O) and momentum (Pz=O) at the cathode. With this

assumption, they find the electric and magnetic fields

across the sheath, which are expressed nicely in terms of

elliptic functions. A laminar flow theory for magnetically

insulated transmission lines (MITL) was presented by Creedon

in 1975 for cartesian, cylindrical and conical geometries

[8]. This theory also assumes the total energy and

canonical momentum across the flow are equal to zero. It is

commonly referred to as the Brillouin flow theory. Wang, in

1977, using a simple transformation showed how the equations
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governing Brillouin flows could be transformed into

Laplace's equation [9]. This allows one to obtain Brillouin

type flow solutions with arbitrary cathode/anode cross

sections. In 1979. Mendel proposed a theory in cartesian

coordinates that allows for arbitrary canonical momentum and

total energy profiles across the electron sheath [10] for

flows with a variety of electron orbits.

Many other papers have been written in the more

mathmatically tractable cartesian coordinates [11-15,24]:

unforta.naLely, a majority of experiments and applications

involving magnetic insulation utilize cylindrical electrode

geometries [16-23]. For this reason, it is important that

the theory done in cartesian coordinates be extended to

cylindrical coordinates if possible. In addition, it is

desirable to carry out new theoretical developments in

cylindrical coordinates. Creedon and Wang were able to

extend the laminar Brillouin flow theory to cylindrical

coordinates. Swegle attempted to extend RMR's work to

cylindrical coordinates, but found that an equilibrium

"quasi-laminar flow solution" did not exist [25]. In this

work, the theoretical developments are done primarily in

cylindrical coordinates.

Not suprisingly, the theoretical efforts mentioned

above accompany very active experimental pulsed power

programs around the world. One pulsed power effort of

particular interest being actively pursued by the US [4].

USSR [26]. etc. is light ion beam inertial confinement
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fusion(ICF). This program requires ion beam pulses with

energy densities of 1014 Watts/cm 2 with rise times of 15

nanoseconds and durations greater than or equal to 20

nanoseconds. Power levels of this magnitude incident on a I

3
cm deuterium-tritium pellet can compress and heat the

target to 108 degrees Kelvin and thermonuclear ignition.

However, the magnetically insulated transmission lines(MITL)

that transport this power to a focusing region typically

have electric fields well above the 20 to 50 MV/m required

for explosive emission of electrons. If it were not for the

exploitation of magnetic insulation, explosive electron

emission would cause the entire system to short out.

In addition, to produce ion beams with the required 15

nanosecond rise times and durations greater than 20

nanoseconds at the necessary power levels requires

sophisticated switching techniques. One technique that has

been used successfully and is undergoing extensive research

at Sandia National Laboratories, the Naval Research

Laboratories, and other laboratories and universities around

the world is the plasma erosion opening switch (PEOS).

A PEOS can conduct mega-Ampere levels [27] of current

for tens of nanoseconds before switching the current to a

load in less than ten nanoseconds. A PEOS operates as

follows. First the PEOS plasma is injected through an

exterior anode onto an interior cathode. Since a plasma

acts as a conductor any current forced down the anode will

short to the cathode and back to the power source -- forming
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an inductive storage loop. When a large pulsed power source

is connected to such a system, current flows down the anode

to the PEOS where it shorts to the cathode. However, when

the current flowing through the plasma becomes so large that

the free charges in the plasma cannot carry the current the

plasma begins to erode away from the cathode. As the plasma

erodes away from the cathode, the impedance between the

plasma bottom and cathode becomes greater than that across a

downstream load. As a result, the generated current is

switched to the load (see figure 15 and Chapter 4 for more

information on the various phases of a PEOS opening). Now.

a PEOS's successful operation depends critically on magnetic

insulation. In fact, a PEOS would not open or if it did

open, it would not remain open long if magnetic insulation

broke down.

Unfortunately, there are many regimes in which magnetic

insulation breaks down even for simple unperturbed MITLs.

These regimes are complex functions of the applied voltages.

line and load impedances, and the anode and vacuum currents.

In addition, a variable impedance structure like a PEOS

severely disrupts the magnetically insulated electron flow

and often results in significant current loss. This is

because an apreciable fraction of the current and power

transported by the transmission lines in the regimes of

interest is carried by the magnetically insulated electrons.

In order to avoid regimes in which magnetic insulation

breaks down and to more clearly understand magnetically
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insulated electron flows, a detailed theoretical and

numerical investigation has been carried out in this work.

Some parts of Mendel's theory [10] have been extended to

cylindrical coordinates. In addition, a new laminar flow

theory in cylindrical coordinates is presented that allows

for non-zero canonical momentum and total energy profiles

across the flow. The new theory includes the previous state

of the art (the Brillouin flow theory) - which predicts

magnetically insulated electron flows with zero canonical

momentum and total energy throughout the flow - as a

special case. A large number of computer simulations have

been done that clearly illustrate how magnetic insulation is

tied to the applied voltages, line and load impedances, and

structure impedances (i.e. a PEOS) cf the system.

1.3 Outline and Accomplishments

The following is a summary of what this dissertation

contributes to the field. Chapters l and 2 illustrate the

need for and the basic theory governing magnetic insulation

in cylindrical pulsed power systems. Some of Mendel's work

is extended to cylindrical coordinates. In comparing

predictieons from the resulting equations to MASK (see

section 2.3). it is found that the magnetically insulated

flow is laminar in nature, but has a non-Brillouin flow

structure.

This motivates the derivation, in Chapter 3. of a

general laminar flow theory (in cylindrical coordinates) of

which the Brillouin flow theory is a special case. The new
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theory is used to predict magnetically insulated electron

flow properties for non-Brillouin laminar flows. It is

justified by detailed comparisons with MASK runs.

In chapter 4. the electron flow downstream of an

opening PEOS (or PEOS like structure) is analyzed. It is

noted that a PEOS launches a magnetically insulated electron

flow by means of an rxg drift. In addition, a set of

equations is generated via the laminar flow theory developed

in Chapter 3 that gives the fields and properties of the

launched flow.

The criteria governing load-limited magnetic insulation

are given in Chapter 5. These are presented in a graphical

form for perturbed and unperturbed cylindrical pulsed power

transmission lines. The threshold for the magnetic

insulation of a system with a PEOS is given. It is

confirmed by favorable comparisons of the theoretical

predictions to an experiment done at NRL [31].

1.4 Basic Physics

The electron flows in large pulsed power systems are

often relativistic and collisionless. This is in fact true

of the electron flows downstream of the PEOSs and in the

MITLs being considered herein. Therefore, the relativistic

Vlasov equation is used as a starting point for theoretical

development. It is given by equation (1) in MKS units. In

fact. all equations and physical relations given in this

text are expressed in the MKS system of units. The

relativistic Vlasov equation for electrons is:
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a Vx8 ep+?xg] f( .t) = 0 (1)

ax ap
The relativistic electron momentum is

p = mv (2)

and the relativistic weighting factor is

-Y (1 - ?ic2) 1/2 (3)

Here v is the directional velocity of the electron, m

9.1095x10 3 1 kilograms (electron mass), e 1.GO22xlO 1 9

coulombs (electron charge). f(x.p.t) is the electron

distribution function, r is the electric field and 9 is the

magnetic induction.

The rand 9 fields are self consistently determined via

Maxwell's equations:

x= -epofd 3  2-t (5)
C

d3p
- f.J _P f . (6)

0

at (7)
at

The studies to be undertaken are often in equilibrium

or quasi-equilibrium which allows one to drop the

derivatives with respect to time in equations (1), (5), and

(7). In addition, the electron density is of particular

interest in much of this work. It is related to the

electron distribution function f(xv.t) by:

-4 1 3p(x,t) = -efd p f(x,,.t) (S)

The physics embodied in the relativistic Lagrangian

will be a basis for much of the following. The relativistic
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Lagrangian is

L -mc2/7 + ep(xt) - ev.ZC'.t), (9)

where ¢(x.t) is the electrostatic potential and A( ,t) is

the vector potential.

1.5 Computational Tools

The primary computational tools to be used are the

2-dimensional electromagnetic particle in cell (PIC) code

MASK [28] and the transmission line code BERTHA [29]. Since

MASK is the basis of this works computational study, it is

introduced first. MASK is referred to as an electromagnetic

code because it solves the fully time dependent Maxwell's

equations (equations (4) - (7)) allowing one to study

electromagnetic waves with it. This is to be contrasted with

electrostatic or magnetostatic codes which do not include

the time derivatives seen in equations (5) and (7) and which

therefore can not be used to study systems in which

electromagnetic waves are important.

MASK solves Maxwell's equations in two dimensions and

in cylindrical coordinates by dividing the region to be

modeled (i.e. a cathode/anode gap) into a computational

mesh. Maxwell's equations are finite differenced on this

mesh with the electric and magnetic fields defined at each

mesh point. The source of these fields are charged

particles existing in and injected into the region of

interest, along with the specified boundary field

constraints.

Typically, each charged particle (macro particle)
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represents 108 to 10 I electrons or ions. These

macro-particles move through the cells of the computational

mesh in accordance with the fields defined at the

corresponding mesh points. The fields are used to advance

the particle position within a computational cell (where the

phrase particle in cell code originates) and vice versa by

means of an integration technique called the leap-frog

method.

The two first-order differential equations to be

seperately solved when using the leap frog method are [30]:

dv (10)

and

dx (II)
dt

Initially one must be given the particle positions and

velocities along with the boundary conditions. Using a

weighting scheme the particle positions and velocites are

converted into charge and current densitit-s. These, taken

together with the boundary conditions, are used in

conjunction with the finite differenced Maxwell's equations

to update the field quantities. After the fields are

obtained they are used to define the force on a given

particle (the Lorentz force):

t) = -e( ) (12)

This force is a function of the mesh cell (position) in

question and time. It is used to obtain an average velocity

for the particle over the time step (see equation (10)).

which in turn is used to update the particle position (see
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equation (11)). Given the new particle positions and

velocities, charge densities and current densities are

obtained which are then substituted into Maxwell's equations

to obtain the time advanced fields. One should note that

the charge densities used in this process are corrected for

particle weighting errors by solving an electrostatic

version of Poisson's equation. In addition, the charge

density on the structure boundaries is modified to insure

the stucture potential remains as specified.

This is because fourier transforms (FFT) are being used

in the Poisson solves. Since this is so, the structures

within the mesh must be defined in terms of the surface

charges that result in the required potential on that

surface. This surface charge density must change with the

changing plasma to maintain a constant potential on the

stucture surface.

The required surface charges are obtained be means of

the capacitive matrix method (30). This method requires the

precalculation of a capacity matrix C. This matrix relates

the plasma induced electrode charge to the potential of the

electrode. The procedure one follows is to first solve

Poisson's equation with no charges on the electrode points.

One then records the difference between the desired value

and the potential actually found. If one then multiplies

this error by C the desired charge at each mesh point along

the electrode is given.

In the following, MASK results are presented for
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cylindrically symetric systems run with and without charged

structures. Two sample MASK meshes are given in figure 3.

Mesh 3a corresponds to the MASK runs for MITLs without any

perturbations. Mesh 3b corresponds to runs for MITLs with a

structure. The cross hatched areas are space charge limited

(SCL) ion emitting regions (when ions are desired). The

cathode is a space charge limited emitter of electrons. A

space charge limited emitting surface refers to a surface

covered by a thin plasma sheath. This is typical of many of

the metallic surfaces encountered in the pulsed power

transmission lines encountered in this study. Any electric

field normal to such a plasma covered surface will cause

charges to flow out of the surface plasma in such a way as

to zero out the normal component of the field at the

surface. The amount of charge required to zero the normal

component of the electric field is easily determined using

Gauss's law. MASK injects this amount of charge self

consistently at the emitting surface every cycle.

Now in figures 3a and 3b, V is the anode voltage; ra

is the anode radius; r is the cathode radius: r is thec p

radial distance to the bottom edge of the structure; D isP

the distance from the left edge of the mesh to the left edge

of the structure; Az is the width of the perturbation, d isg

the diode gap spacing and D is the axial length of the

system. The above parameters are varied in a series of over

100 calculations and discussed in chapter 5. The

calculations are used to determine the magnetic insulation
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a. The mesh set-up for simple MITL MASK simulations.

ANODE V- Vo

PEOS

SZP TRANSMISSION LINE
Tp

CATHODE V=O

rc rp dg
DIODE

D

b. The mesh set-up for PEOS MASK simulations.

Figure 3. MASK meshes.
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threshold as a function of applied voltage, geometry. and

load impedance. They are also used to determine flow

properties downstream of a PEOS.

This is done by allowing the structure depicted in

figure 3b to emit ions. This ion emitting structure

simulates a PEOS at some instant in time. In other words.

as the switch plasma erodes away from the cathode it can be

approximated by a conducting block that emits ions (SCL).

In this way, one can determine the flow properties and

magnetic insulation threshold for a system with a PEOS

without the expense of modeling the PEOS plasma itself.

As a check on the magnetic insulation threshold

determined by MASK for a system with a PEOS. a transmission

line code called BERTHA utilizes the obtained threshold to

simulate a Gamble II experiment [31]. The simulation

results are found to correspond closely to the experimental

results which partially justifies the calculational study.

BERTHA (following taken from reference (29)) follows

forward and backward moving current and voltage waves and

then superimposes these waves to find the physically

measured voltages and currents at any point in a circuit.

The current and voltage at a given point and at a given time

are given by:

I VlI - V2 (31= 1' (13)
z

0

and

V =V 1 + V 2 (14)

where z is the line impedance and V 1 amd V 2 are the
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voltages of the forward going and backwards going waves

respectively. From this. it is clear that the forward going

power flow is givenby:

P = IV =(V - 2 (15)

When the voltage waves are incident on an impedance

discontinuity, as between the MITL and load the incident

wave is partially reflected and partially transmitted (see

figure 4). The reflection and transmission coefficients are

given by:

ZL - (16)
z + zL o

and

2 ZL 
(17)

zL + zo

where z L is the load impedance. Any number of reactive or

non-reactive circuit components may be included in a given

problem. For more details on this, see reference [29].
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V2

Figure 4. Transmission Line Elements.

Z is the line impedance and ZL is the load impedance.
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CHAPTER 2

BASICS OF CYLINDRICAL MAGNETICALLY INSULATED TRANSMISSION

LINE THEORY

Because a majority of experiments involving magnetic

insulation utilize coaxial cylindrical geometries, and

because of the lack of theoretical development in

cylindrical coordinates, magnetic insulation in cylindrical

coordinates is considered here. Parts of Mendel's cartesian

theory [10] are extended to cylindrical coordinates and

checked using a pressure balance analysis. In comparisons

of the theoretical results to MASK calculations and in

examination of particle orbits it is determined that the

electron orbits in many MITLs are laminar in nature. As a

result, the only laminar electron flow theory available in

cylindrical coordinates - the Brillouin flow theory - is

presented (no one has yet been able to produce a

self-consistent non-laminar flow theory in cylindrical

coordinates). Unfortunately, the laminar electron flows it

predicts do not correspond to those obtained in a variety of

MASK computer experiments. This motivates the development

of a general theory for laminar flows in cylindrical

coordinates which is presented in Chapter 3.

2.1 Extend Cartesian Theory to Cylindrical Coordinates

The nature of the problem is shown in figure 1. A

voltage difference (in MV regime) is set across a coaxial

transmission line and after a few nanoseconds an equilibrium
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magnetically insulated state is established. The clectrons

that are emitted from the cathode in a space charge limited

fashion enter a variety of orbits - common. curtate.

prolate, laminar. etc. - depending on non-uniformities in

the fields.

Since the net flow of current inside the transmission

line is in the -z direction (figure 1). and there is

azimuthal symmetry the magnetic field between the anode and

cathode will be an r dependent field in the 0 direction: 9 =

B(r)0. In addition, neglecting end effects, the gradient of

the applied potential yields an r-dependent electric field:

S= E(r)r. Because an equilibrium state is being considered

all time dependent terms are dropped at the start of the

theoretical development.

Now, applying Gauss's law (from equation (6)) in

conjunction with the relativistic Vlasov equation (equation

(1)) implies:

2 a 
f

V. r qr,(r) = -p(r)/Eo) = F_ fd z a r fC r 'p z ) , (

0 0

where v = 1/r(r-(r-)) , p(r) is the potential as a

function of r across the transmission line. p(r) is the

electron charge density, 6 is the permittivity of free

space, e is the electron charge, pz and pr are the z and r

components of momentum respectively, and f(pr'pz) is the

pr pz space electron density.

It is also true that if = B(r)O then:
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a A a Az)
(-x-)4 = (a--r - ar - (19)

Since there is no electron flow loss in the radial direction

and the electron orbits exist uniformlyythroughout the

electron sheath, there is no net radial electron flow as a

function of r. This is because for every electron moving

towards the cathode there is one moving towards the anode in

every macroscopic control volume. As a result A = 0.r

Therefore,
^ OA -

B(r) = -( r z)O (20)

This means Ampere's law (equation (5)) becomes

= V r z 0o (21)

Rewriting (equati. (21)) in terms of the distribution

function f(pr'pz ) gives:

v2A(r) = Wefdp fdp P f(pr,pz) (22)
Ar) o z r LZfp'z

It is convenient to write equations (18) and (22) in terms

of the canonical momentum and total energy. The appropriate

Jacobian of the transformation is given by:

aq. r r

det(-') = cz (23)

cz aw

where p czis the z-component of canonical momentum and w is

the total energy of a flow electron. The components of the

Jacobian can be found using the relativistic Lagrangian

subject to the constraints on the fields mentioned

previously:
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2 2 2 2 1/2L -mc2(1 - ( + 2 )/c ) + ep(r)-eA (r) (24)

The z-component of canonical momentum and momentum are

respectively:

CZ =m - eA (r) (25)

and

pz = m- ' Pcz + eA (r) (26)

The r-component of canonical momentum and momentum are given

by:

aLPcr = myr = Pr (27)

The total energy is easily shown to be:

2
w = (I-l)mc - eP(r) (2S)

For convenience these relations are written in dimensionless

form in terms of:

W = w/mc2  (29)

2= 1+eq,/mc (30)

a = eA /mc , (31)z

Px = px/mc ' (32)
th

where the subscripted x of equation (32) refers to x

component of momentum.

In this new notation, equations (25)-(2S) become:

P = P - a , (33)cz z

Per = P = ((W + I)2  -1 (Pcz + a) 21/2(34)

W = 4 (35)

This means the Jacobian is (from equation (23)):

det(x - 2 1 (36)
((W+)2__(pcz
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Equations (18) and (22) can now simply be written

non-dimensionlessly in terms of the total energy and

canonical momentum:

2 = rr A(rP .W)(44W)dP dW (37)
r ((4+W) 2 -1-(p +a)2 )1/2

cz

2 a = A(rP W)(P +a)dP dWJJf()+)2--(c a 2 )1/2 (3S)
(( W)2-1-(p +)) /

All that remains is to define A(r,P ,W):
cz ~ -~o~i(

A(r.P ,W) r m j .W)j - F(P .W) (39)CZ r mc cz, r cz'

This expression follows from arguments found in Appendix A

(which is a derivation of equations (37) and (3S) from a

slightly different point of view).

In order to avoid rewriting the large integral

arguments of (37) and (38) the following definition is

given:

G(.a) S ff FCPcz'W)C((+W)2 -1-(Pcz+a) 2) 1 2 dP czdW (40)

This allows one to write (37) and (3S) as:

V 7 aG( (41)

and

2 a 1 aG($,a)
r r aa (42)

Now, multiplying equation (41) by dr and equation (42) by

da d
-r and adding (with - ') gives:

r¢ 2 .2 .2_ 2 /
[r-(4 , -a )], + (4Y a,' ) = 2G. (43)

Another useful equation in the following work is obtained by

multiplying equation (43) by r and regrouping:

[r 2(4'2-a'2)]' = 2((rC)'-G) (44)



26

Since most of the theory in this dissertation is related to

these equations it is crucial that they be true. In the

next section, a pressure balance study is performed that

justifies equations (43) and (44). Further justification is

given in section 2.4 where the well known Brillouin flow

results are obtained by taking a limiting case of equation

(43).

2.2 Pressure Balance Check

In this section, equation (43) is used to obtain the

electric field and magnetic induction at the sheath edge.

This is compared to the exprcssions obtained for the fields

using the Maxwell-Stress Tensor. The fields are obtained

from the stress tensor by noting that the electron cloud

flows down the axis(z) in equilibrium. Since the electron

sheath neither moves toward the anode nor the cathode the

sum of forces must be zero (see figure 5):

dt mechanical + field) 0 ,

fvol v d x= f nds (45)

Now, - !1 V - I -(E2+B2)) , (46)47r 2

= Maxwell-Stress Tensor

where P refers to the momentum. If one substitutes the

fields = E(r)r and = B(r)O into equation (46) and then

substitutes the result into equation (A5) the following is

found:
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0 )2 )'B 2 2 2
- LJ.-02L (E(rm -B(rm )rm  (E(r C) B(r) )rc rdO

r 2 _ (B(r)2 -E(r) 2) _(/7

C

where r = -isinO +jcos@ and 6 = -icosO - jsinO. After,

integrating (47). rearranging terms and assuming space

charge limited emission (E(r) = 0) one obtains:

(rm)2 =c 2 (B(r ) 2 r B(r 2 +

m

c 2/rJr m(B(r)2-E ) 2 (48)
Mr c2

C

Now. if one integrates equation (43) over the entire

sheath ,equation (48) is again obtained. This indicates

equations (43) and (44) are indeed true statements.

It is interesting to note that the integral term on the

right hand side of equation (48) is composed of terms due to

electromagnetic stresses in the flow (attributable to

non-laminar orbits and the cylindrical geometry). This term

is non-existent in cartesian coordinates. The expression on

the left hand side in equation (48) and the first term on

the right are pure pressure terms.

2.3 Laminar Nature of Electron Flows

In this section. equation (44) is integrated and the

magnitudes of the stress tensor terms (P of equation (49))

are found to be relatively small. In addition, particle

orbits for representative MASK MITL calculations are

examined. The stress tensor check and the simulations
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indicate very laminar electron orbits. This is exploited in

chapter 3.

First, integrating equation (44) from the cathode (r )C

to the sheath edge (r) yields (see figure 5):

r2 ( V -a. 2 ) r 2( 2 a) m G dr = P (49)m c m c M
r

where the subscripts m and c refer to the sheath edge and

cathode radii respectively. Writing equation (49) in

dimensional form and noting that B = o Ia and B = I Cm 2irC w
2F rr 2-wr

m c

(by Ampere's law where I is the cathode current and I isc a

the anode current) implies:

- Co 2 _ 1/2[ 4rcP ,1/2
m 2r (I I )1- (2 2 r (50)mmr ao I I 2a c

0

where rm is the electric field at the sheath edge (rm). It

is also true that (from Gauss's law):
I -I ^

_ a c r , (51)

27re r vd

where v d is the average drift velocity of the electron flow.

From (50) and (51) one sees that:

[Ia-I ]1/ 2 [ 4ircP 1/2

Vd = - - 2 2 (52)
0o( a  c )

It is also obvious that the electric field at the anode is

given by:
rE

Ea = rm m (53)
r

a

In table 1, the electric field at the anode (E) for

various MASK simulations corresponding to figure 3a and

Appendix C1 and C2 are given. In addition, the electric
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field occuring at the anode for the corresponding

theoretical laminar flow (using MASK generated anode (I )

and cathode (Ic) currents) is presented for comparison. The

laminar flow electric field at the anode can be obtained

from equations (50) and (53) if one realizes Pm of (50)

equals zero for laminar flows because the radial component

of momentum equals zero for (P = 0) all laminar flow

electrons. From equation (34) and (40) this implies

C(4,a)=O, and from (49) that P = 0.m

The percentage difference between the MASK and laminar

electric fields at the anode are given in Table 1. It is

clear, from the table, that the electric fields are close (

within plus or minus 5 percent except for simulations

M407-M412) to what they would be for laminar flows. In

figures 6a and 6b one can examine the electron orbits for a

couple of these problems and see their laminar nature.

Laminar
Simulation I I E E % Diff

a c a a

M407-M412 -1.56xlO5 -1.46xi05 -6.1xlO 7  -6.6x107 7.5

M417,M419 -7.86x10 4 -3.44x10 4 -8.3x107 -S.5x107 2.2

M418,M420 -8.46x10 4 -6.5x10 4 -6.8x107 -6.5x107 -4.8

M414 -9.85x10 4 -8.4xl0 4 -6.3xl0 7 -6.2x107 -1.6
M424 -7.96x10 4  -3.5x10 4  -8.5x107 -8.6x107 1.0

M458 -1.77x104 -1.6xlO 4 -9.4xlO 6 -9.3xi06 -1.4

Table 1. Comparison of anode electric fields from MASK and

laminar theory (I and I have the same sign because they

are defined in terms of a system current loop).
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For figure 6a (simulation M424, see Appendix CI). it is

clear that many of the emitted electrons are traveling .15

to .2 meters before returning to the cathode. For common

orbits (see figure 1). the electrons will travel

approximately 2 Larmour radii in the z direction before

returning to the cathode. For this problem, the average

Larmour radius is approximately r1 = .0035 m. This means

the electrons are traveling approximately 60 Larmour radii

in the z direction before returning to the cathode. The

orbits are very laminar as a result. Perturbations and

gradients in the electric and magnetic fields are

responsible for this state of affairs.

For figure 6b (simulation M414). the electron orbits

are confined more closely to the cathode. This increases

the likelihood of an electron returning to the cathode.

Nevertheless, the orbits shown in 6b are curtate and

prolate. They are periodic, with a period in z of

approximately .01 m. The average Larmour radius is

approximately .001 m; so, the electrons travel 10 Larmour

radii in z per gyration. Their total displacement in r per

gyration is approximately 1.5 Larmour radii. Therefore, the

orbits are also very laminar in nature.

The laminar nature of the electron flow observed with

MASK in cylindrical coordinates is consistent with MAGIC (a

2-dimensional electromagnetic PIC code) simulations done in

cartesian coordinates at Sandia. In the Sandia simulations,
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it was found that MITL flows in cartesian coordinates are

laminar in nature but non-Brillouin [32]. By non-Brillouin

it is meant that the canonical momentum and total energy are

n --rero across the electron sheath. Thi assumption of a

canonical momentum and total energy equal to zero across the

sheath is fundamental to the Brillouin flow theory. In this

work, the non-Brillouin nature of the flow is ascertained in

cylindrical coordinates by examining a laminar flow and

comparing it to the Brillouin solution. All the simulations

presented in Table 1 are non-Brillouin laminar flows. This

is shown in detail for cases M458, M420 and M424 by

comparing their magnetic field profiles to a Brillouin flow

solution in section 3.4.

2.4 Brillouin Flow Theory Derivation

In this section the Brillouin flow theory is derived as

a special case of equations (40) and (43). This derivation

is done to familiarize the reader with the state of the art

in cylindrical MITL flow sQlutions which will become a

special case of the more general theoretical developments to

be presented in Chapter 3.

For this derivation, it is assumed that the radial

component of velocity (r) for electrons in the flow field is

zero (as it must be for laminar flows). It is also assumed

that the total energy and canonical momentum across the flow

are equal to zero. This is a characteristic of Brillouin

flows and comes from assuming the electrons have zero energy

and momentum at the cathode, and energy and momentum
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conservation. It is also assumed that the fields are

uniform in the z direction. The last assumption is

typically not satisfied in experiments because of end

effects. transitions. instabilities, ca-ity mcdes, and all

other perturbing effects. The non-uniform fields are

responsible for non-Brillouin flows. However, in the

following, one is considering a non-perturbed laminar

electron flow.

Now, if one sets the total energy and canonical

momentum equal to zero in equation (40) one obtains:

G(¢,a) u = ({2-1-a2)1/2 (54)

and

u (55)
U

This implies equation (43) becomes:

(4'2a'2) + [r(4'2-a' 2 )] ' = 2u' (56)

It is important to note that

cu-2- 2)1/2 = = 0 (57)

This implies u = 0, which forces the derivative of u with

respect to r to also be equal to zero: u* = 0.

With u equal to zero, equation (54) becomes:
¢22
2-a = .

(58)

In addition, with f(r) = (,'2-a'2 the integration of

equation (56) gives:

f(r) = (const/r) (59)

Relation (58) leads one to try a solution in which

4=coshS(r), and a=sinhS(r). This coupled with (59) implies

2 2S'(r) = (const/r) or that:
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dS(r) _ const which implies S(r) = const2 lnr (60)
dr r

To simplify matters, space charge limited emission is

assumed so that the electric field at the cathode is zero.

Also, the electrostatic potentiai and vector poLential ave

conveniently set to zero at the cathode. The magnetic field

at the cathode is given by Ampere's law (Bc = p101 c/ 27rrc) "

The total current flowing in the system is governed by the

potential at the sheath edge and at the anode in conjunction

with the system geometry. in a somewhat lengthy derivation

[S]. Creedon relates these quantities for a Brillouin flow.

He finds the anode current to be(this relation is obtained

independently of Creedon in Chapter 3):

= 2V ic 2 ITm [2(+(2l 1/2)+ ] a (61)a 0ce ln(ra/r )lnmm 2_ 61/2
( m-l

He also shows that the potential at the sheath edge for a

Brillouin flow is related to the anode and cathode currents

by (this is also independently obtained in Chapter 3):

m a c (62)

where -r is the relativistic factor at the sheath edge and

'a is the relativistic factor at the anode. i is related toa
1 + eV

the potentials by I + 2 Where V is the electrostatic
mc

potential in question. Equation (62) coupled with equation

(61) places a restriction on the allowed ratios of anode

currents to cathode currents in the Brillouin flow theory.

The theory will not satisfy Ampere's law if equations (61)

and (62) are not simultaneously satisfied. An example of
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the Brillouin flow theory not satisfying Ampere's law is

shown in Chapter 3.

From equations (29)-(32), (59)-(62) and the fact that

4=coShS(r) and a=sinhS(r) one obtains the following

self-consistent MITL flow solution:

2me

,P(r) = 0 (cosh(Aln(r/r))-1) (63)e c

m c
A(r) = e sinh(Aln(r/r )) z (64)

2
mc 

A
=(r) 0 osinh(Aln(r/r )r (65)

e r c

incAB(r) = -er cosh(Aln(r/r c)) 0 ,(66)

v(r) = c tanh(Aln(r/rc)) z (67)

2 A2mceA

p(r) = 0 2 cosh(Aln(r/r)) (68)
e r

-l
cosh

r =r exp( A m (69)m cA

A -[coshl' + ITo- ITm (r a, (70)m-1) 1/2

m

where is the electrostatic potential, A is the vector

potential, is the electric field, 9 is the magnetic

induction, v is the particle velocity, p is the electron

charge density, and r is the electron sheath edge radius.
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These relations were first presented by Wang and

DiCapua in 1980 [33] based on Creedon's findings given in

equations (61) and (62). Till now, this set of equations

was the oily self consistent cylindrical MITL flow solution.

Unfortunately. the Brillouin flow solution does not

correspond to numerical simulations done around the country

which show laZminar but non-Brillouin 1ows. The

discrepancy is due to the fact that the more realistic

2-dimensional simulations allow for perturbations in the

system not taken into account in the Brillouin flow theory.

This deficiency is eliminated by theoretical developements

presented in the next chapter.
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CHAPTER 3

GENERAL THEORY OF LAMINAR FLOWS

Until now, the only relativistic self-consistent MITL

flow solution in cylindrical coordinates was given by the

Brillouin flow theory which applies specifically to laminar

electron flows with zero canonical momentum and total energy

across the sheath. This corresponds to an ideal system with

no perturbations. Unfortunately, all experimental systems

have perturbations and end effects.

In this chapter. a general theory for laminar MITL

flows is presented in which perturbed flows can be modeled.

The Brillouin flow theory is found to be one of an infinite

number of possible laminar MITL flow solutions predicted by

the more general theory. From the general theory, it is

discovered that the specification of a density profile

determines unique values of the total energy and momentum

across the flow. With this in mind a density profile is

generated based on equations (40) and (43). The profile is

then used to generate the complete Brillouin flow solution

via the general theory of laminar flows. The canonical

momentum and total energy are found to be zero (figure llb)

as expected. This comprises an independent derivation of

the Brillouin flow theory and a check of the general theory

of laminar flows.

The general theory is then used to simulate several

MASK calculations for short MITL's in which the density

profile across the flow is approximately constant and
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therefore non-Brillouin. These are considered because of

the ease of generating a self-consistent theoretical set of

equations for a constant density profile. It should be

emphasized at this point however, that any density profile

could be substituted into the key equations(( 7 5)-(84)) to

obtain a self-consistent laminar MITL flow solution. T t

should also be emphasized that the specification of a

density profile is equivalent to specifying the canonical

momentum and total energy across the ,low, or specifying the

velocity profile, or the magnetic field profile, etc. In

other words, given one type of detailed information about

the flow the general theory allows one to obtain all other

pertinent flow quantities. Since it is especially

convenient to do this using the density profile, the

following work is presented as if one had knowledge of the

density profile across the flow.

Nevertheless, if one had detailed knowledge of the

magnetic fields or current across the sheath (from

experiments), the following equations are still useful.

After coding them on the computer, the density profile could

be altered iteratively until the magnetic field or current

profile of interest across the sheath is duplicated. One

would then have a complete flow solution given a minimum of

information.

3.1 Relation Between the Density and Velocity Profiles

The general theory is obtained via a surprising

relation between the density and velocity profile for
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relativistic MITL flows. A specification of the density

profile implies a particular velocity profile and vice

versa.

This interesting result is derived in Appendix B in

which the following procedure is carried out: First,

equation (43) is integrated from the cathode to some

arbitrary r within the sheath. The integrated result is

rearranged so that the electric field ( (r)) is set on the

left hand side of the equation. Using Ampere's law, the

magnetic field quantities on the right hand side of the

equation are written in terms of the anode and cathode

currents. Then, equation (44) is integrated from the

cathode to r to obtain another expression for 9. The

resulting equations are evaluated at the sheath edge (r )

and equated. After differentiation and algebraic

manipulation a relation between the density and velocity is

obtained. This relation is (given in Appendix B):

f(r) 1 g(r) 2 (71)
1-k g(r)

21
where 1 E I (72)

a c

I -I
a c (73)1 +1

a c

and

g(r) p(r) v(r) 27r dr (74)
f(r) I a c r

c

Now f(r) is defined in terms of the density as:
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frp(r) r dr
r

f(r) = c (75)
frm p(r) r dr

C

where f(r) is a normalized weighted average of the electron

charge. It equals zero at the cathode and smoothly

increases until reaching the value of one at the sheath edge

(not to be confused with the distribution function f(P ,W)cz

in the Vlasov equation).

Simple calculus and algebraic manipulation of equations

(71)-(75) results in a more clearly defined relation between

the velocity and density profiles (this is done in Appendix

B):

Ic  r i2 12f2

SC 1 + a - 2c )  (r) 1/2

2r p(r) r dr c

Jr c
r

c

( 2 1 22)f2(r) 1/2_ [ '+ a 'c~ (r)
+2 j-la2]cz (76)

c

where I is the anode current, I is the cathode current,
a c

p(r) is the density profile and f(r) is the normalized

weighted density profile.

3.2 Laminar Flow Equations

Given a density profile and the corresponding velocity

profile (equation (76)), the self-consistent MITL flow

solution is easily obtained via Maxwell's equations (subject
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to the restrictions of section 2.1). The resulting

equations are collected below in a convenient form. Given

the charge density (p(r)) and the velocity (from equation

(76)) the current density is

J = p(r)v(r)-4 r (77)

The electric field is

r p(r) r dr

r
r r (78)

0

where r(r ) = 0 , because the cathode is a space charge

limited emitter of electrons. The corresponding

electrostatic potential is

(r) = - E(r) dr ,(79)

r
c

where p(r ) is chosen to be zero. The magnetic induction is

simply written as

t(r) r j(r) r dr + Ic (80)
r 2 7r

c

The vector potential is

r(r) - B(r) dr z (Si)
r

c

where Z(r ) = 0 is chosen to equal zero at the cathode.

Now. from equations (26) and (35) the canonical

momentum and total energy across the flow are given by:

P (r) = m-yv(r) - eA(r)
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my v r)m 2 2 1/2 - eA(r) (82)

(1 (r)/c2)

The total energy is

W(r) = -mc2 1 (1 - v 2  /2 1/2 - ep(r) (83)
(1 v(r)/c)

Also for laminar flows,

r(r) = -(r) x 9(r) (84)

Equations (76). (78). and (81) must satisfy equation

(84). For this reason equation (84) is used to check the

validity of laminar flow solutions produced by the general

theory. An example of this kind is shown in figure lob.

If the sheath edge radius (r m) in equation (75) is

unknown it is easily found given I , I , the applied voltagea c

across the gap(Va ) and equations (76)-(79). This is done

for the constant density flow derived in section 3.3.2.

From an experimental point of view, it is much more

desirable to have the MITL flow as a function of I . I anda c

V rather than I , I and r . This is because the applieda a' c m"

voltage across the diode is usually known; the outer sheath

edge radius of the electron flow is not.

In the foregoing, it was stated that given only a

density profile, a self-consistent MITL flow solution is

obtained. This is indeed true; however, if one desires the

particulars of a solution for a given voltage, line

impedance, and load impedance (or equivalently voltage, line

impedance, and anode and cathode currents) the latter must

be supplied. Equations (71)-(84) were presented with this

in mind.
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3.3 Two Derivations

In order to demonstrate the general theory of laminar

flows, a couple of interesting MITL flows are derived.

First, the Brillouin flow theory is derived independent of

Creedon's total current relation (equation (61)). The two

independently derived theories are plotted against each

other and are found to match.

Then, the general theory is used to generate a

self-consistent MITL flow solution for flows with constant

density profiles. This is done because in simulations of

short MIT s , quasi-constant density profiles were observed.

The theory is then compared to the simulations and found to

accurately predict quantities of interest.

3.3.1 Brillouin Flow

In this section an independent derivation of the

Brillouin flow theory is presented. Starting from equations

(40) and (43), one quickly obtains equations (5S)-(60). and

the relations 4(-coshS(r) and a=sinhS(r) as shown in section

2.4. From these and Maxwell's equations it is easy to show

that the Brillouin density profile will have the following

form:

2 A2
mc E A0 n

p(r) - o 2 cosh(Aln(r/rc)) (85)
r

This is equivalent to equation (68) except that the critical

constant "A " (equation (70)), previously obtained fromn

Creedon's analysis, is indeterminate. Since Creedon's

results are not needed and in fact are derivable from the
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general theory, the following constitutes an independent

derivation of the Brillouin flow theory.

From equation (85). equation (75) becomes:

sinh(A nln(r/r c))
f(r) = sinh(Anln(rm/rc )) (86)

This means the velocity (equation (76)) becomes:

e[ic [(l+m sinh2(A lnL 1/2
2wmc 2 eoAn sinh(A nln(r/r c)) n rc

_ (l+mlsinh 2(A inL ))1/2 ^
In r cz (87)

1 2 1 12

where m - a C (88)
1I2sinh(Anln(rm/re)

Now, m 1 must equal 1. This can be seen by first noting that

the density, electric field, and potential do not depend on

m1 . So, from the potential (equation (91)) evaluated at the

sheath edge and the realization that -Y m = I /I (fromS a c

equation (124)) at the sheath edge it is possible to obtain

A . One can then solve equation (88) for A . By comparingn n

the resulting equations it is evident that m 1 equals one.

This implies equations (77) and (87) become (when r < r <C

r ):

elII -^

2m c2  tanh(A nln(r/r ) z (89)

0 o n

AnII I
(r) - 2 sinh(Aln(r/rc)) z (90)

2Fr r
From (78) thru (81) in the region r c< r < r after algebra
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one obtains:

2
mc

qp(r) -e (cosh(A ln(r/r ))-l) (91)
e n c

2
mnc A

- n 0 n sinh(A ln(r/rc)) r (92)
e r n c

~0 1Ic I
2(r) -2,A sinh(Anln(r/rc)) z (93)

n

and

9(r) - 2wr cosh(Anln(r/rC) 0 (94)

In the region r < r < ra the following relations apply:

2 2

12 12 1/2 1 - I0 [a °] a o
e Anln(r/rm 12 + 1 (95)

CC

2
mc

0 A sinh(A ln(r /r ) (96)
er n n m C

0(r) 0- (1a In(r/rm) + - sinh(A ln(r /r (2v a)m A (97)n

g(r) - 2irr 'ia{ 6 (9S)

and

p(r) = -(r) = J(r)= 0 (99)

where from (88) and (94) the constant A is

n

1 2 12 1/2
An = ln(r/r) sinh-I a 2

c
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cosh 1 (I aIc) (100)

ln(rm/r C )

To determine the position of the electron sheath edge (rm).

equation (100) is substituted into (95) and evaluated at the

anode where qp(r) = the applied voltage (Va). The following

is obtained:

1

r = (rar ) + (101)

where

77 [ 2 _12 / a -I c 11/21 (102)
cosh (1 I/) moC 2(,2- /2 a c

a c 0 a

In addition, for v= - x 9 to hold (equation (S4)):

2

2rm c [-0] 1/2Io nrm/ )4 cosh-1lI/Ic) (103)
c- ln(r /r )ac

m c 0

If one carefully compares the equations in this section

to those in section 2.4, it can be seen that the formulation

and source of the constants is different but the functional

forms are the same. If one compares the flow quantities

predicted by these two independent formulations it becomes

apparent that they are predicting the same flow quantities

given the same inputs. This is done for the potentials,



48

fields, density, momentum and energy profiles in figures 7

thru 11. In the figures, BRI TH corresponds to Creedon's

solution and BRIN TH corresponds to this works independent

derivation. Also in figures 7 thru 11 are the constant

density (RHO TH) solution (derived in 3.3.2) results in

which the anode and cathode currents along with the total

charge, are the same as the Brillouin flow case. It is

clear from the figures that the two independent Brillouin

flow solutions overlay each other. The contrast between the

constant density flow solution and the Brillouin flow is

apparent in these figures.

The Brillouin and constant density flow solutions shown

in figures 7 thru 11 are characterized by the following:

I = - 7.18 x 10 Amperesa

S=- 4.116 x 10 Amperes
c

r = .05 Meters
a

r = .025 Metersc

The Brillouin flow cases have a potential difference of V aa

2 x 106 volts between the anode and cathode (figure Sa).

However, the constant density solution allows a lower

potential for the same currents (figure Sa) in this case.

Eventhough the constant density and Brillouin flow

solutions have differing potentials applied across their

respective anode/cathode gaps, the anode electric fields

E(r ) are the same:

2 2 1/2
CPO (I a I C)a ca2w r a lq



49

This relation is in accordance with the laminar (P = 0)

form of equation (50). Since the electric fields are the

same at the anode and the fields of the Brillouin solution

are larger close to the cathode (figure 9a), the potential

for the constant density flow is lower (figure 8a) than the

Brillouin flow for this case.

Before proceeding to the next section. it is worth

discussing figures lOb. lla and 11b. Figure 10b gives for

a Brillouin flow field and then compares it to -v x

These overlap up to the sheath edge where v goes to zero.

This verifies that the flow is laminar. This test was

performed and passed on all the laminar flow solutions.

Figure Ila gives 12 P2 curves for the constant density
cz

and Brillouin flow cases. 12 P2 must equal 1 . as long as
cz

one is within the electron sheath and is considering a

laminar flow. This relation is seen to be satisfied in

figure Ila. Figure 1lb graphs the total energy vs the

canonical momentum for the constant density and Brillouin

flows. The constant density flows have a profile in the

fourth quadrant. The two Brillouin flows have canonical

momentums and energies equal to zero across the flow. The

reason the canonical momentum and total energy are not

exactly zero for the Brillouin flow solution obtained in

this section is becau ., insufficient iterations (three

iterations) were taken in evaluating equations (101)-(103).

The more iterations taken the closer the canonical momentum

and total energy are to zero.
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3.3.2 Constant Density Flow

In various MASK calculations of short MITLs, it has

been noted that the density as a function of radius is

relatively constant out to the sheath edge, where it drops

to zero. For this reason (and the fact that the integrals

are simpler to evaluate), a self-consistent MITL flow for a

constant density profile is given below. Substituting a

constant density profile into relations (75)-(84) and

evaluating between the limits r < r < r results in:

2 2
r - r

f(r) c (105)
2 2
r r
m c

1 2 2 1 1/2
c(r) = (2+2. a c

p 2r -r) (r)
c 

c

I2_ 2  2 1/2
-l1+(a2 2 f^)J

a2 )f2 (r) Z (106)

c

j(r) = -plV(r) (107)

,p(r) IL (r2 - 2 2r 2 1n(r/r 1 (lOS)46 -rc - c c

0

2 2

-Ipl(r -r r (19

2c r
0

I' I^

=(2r - c (r) z (110)

nd
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2 _1 2 r2 2 1/2

(r) - 2wr 1 2 iir2 -r
0 in cC

r2r2-r2 + 0 (111)

c m e

where

K(r) ( ax 2+bx+c) 1/2+ b 1 2 1n(2a (ax 2+bx+c)1/2

2c /2 2a 1/22
2) 12 (ax 2 +bx+c) 1+bx+2c 

2r

+2ax+b) - 1/2 In 
1  ax (112)

1 2r 2
c

a = c3/4 ,b -- c r c C r 4+ (113)
3 3 c 3 3c

2 2
I -I

c a c 2 (114)
1 1 (r-r -C mC

Evaluating these same quantities from the sheath edge to the

anode (r < r < r ) results in:

p2 - (
(r) 2 2. r

(r)= - 2Pr (r-r) r (116)
0

-(ro)c ln(r/r) + c 4  (117)

-°Ia 6  (118)

z~rj 2irr

and

V(r) = p(r) = J(r I = 0 (119)
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2r
2

hI m

where c - 2C K(r) (120)

2r 2

c

Thus far, all that is known about the density profile

is that it is constant out to the sheath edge where it drops

to zero. The magnitude of the electron density arid the

sheath edge radius can be self-consistently determined from

the theory.

The magnitude of the electron density can be obtained

from equations (104) and (116). It is given by:

12 - 12 1/2

= a (121)
cir(r - r )

m c

The sheath edge radius (r ) is obtained by evaluating (115)m

at the anode where the anode voltage (V ) is given. Thea

resulting expression is:

[r[ ] ( 1 _2 ] rr 2rrF cV1

rc / ) -exp.5 - 0 a (122)rcr c2 2 )1/21

a(I c

So, r is obtained iteratively given the anode and cathode

currents, along with the anode and cathode radii, and the

voltage difference across the diode. Once r is known all

other quantities defined in equations (105)-(121) are given.

In typical experiments r , r , I a and V are known. I is
a c a a c

a little harder to obtain, but can be found using a magnetic
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probe next to the cathode[34].

It is also interesting to note that T = I /I at them a C

sheath edge. This can be seen by evaluating (106) at the

sheath edge:

c 2 12 1/2v~r ) = T{I - I (123)
m a ca

Equation (123) gives the velocity of the electrons at the

sheath edge, so the relativistic factor at r is

1 'a
- 2r/21/2 =  

(124)
m (1 2(r )/c 2) 1/

Equation (124) also holds for the Brillouin laminar

flow solution (see equation (62)). What thi3 means is that

even though the electron sheaths have differing electron

density profiles and sheath edge radii(r ), the electronm

velocity at the sheath edge is the same given the same ratio

of I /I
a c

Since -r = I /I at the sheath edge for two verym a c

different density profiles, perhaps im = I /I at the sheathm a c

edge for all laminar flow solutions. This is in fact true

and is easily proved using the general theory of laminar

flows. First one needs to note that f(rm) = 1 at the sheath

edge (see equation (75)). In examining equation (76) one

r
needs to realize that the integral 27 fr p(r)rdr is simply

c

the total charge (q) in the sheath per unit length in z.
From equation (50) with P = 0 and Gauss's law the total

m
electron sheath space charge per unit length is given by:
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2 -2 1/2
a c (125)

Substituting f(r) = I and equation (125) into equation (76)

results in:

c 2 2 1/2
v(rm) = a (I 12) (123)ma c

a

which when substituted into the relativistic factor

evaluated at the sheath edge results in:

-v = I /I (124)m a c

So. for all laminar flows -Y = I /I at the sheath edge!m a c

3.4 Comparison of Constant Density and Brillouin Flow

Theory Predictions to MASK Simulations

In many short cylindrical MITL simulations,

non-uniformities in the electric fields (usually E ) resultz

in laminar flows with density profiles that are nearly

constant. In the following, such MASK simulations are

compared against the constant density and Brillouin flow

theories. The magnetic fields for three cases are

presented: 1) strongly insulated - little space charge

flow (figure 12), 2) fairly well insulated - more space

charge flow (figure 13). and 3) insulation breaking down

greatest amount of space charge flow (figure 14).

In figure 12, the theoretical results essentially lie

on top of the MASK results. The space charge current flow

(I = I - I ) is only 11% of the cathode current. Thee a c

reason the Brillouin and constant density solutions match so

closely is because there is very little space charge current

flow. The magnetic field is primarily due to the cathode
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Space Charge Flou.
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current. The space charge current distribution, although

radically different between the two cases, is so narrow in r

that the total current (I ) is included at a radius of .007

meters. By Ampere's law the magnetic fields must match from

that point on. Therefore, the fields essentially lie on top

of each other from .007 meters to the anode (at .05 meters)

as expected.

However, in figure 13. it is clear that the constant

density result is more accurately matching the simulation

results than the Brillouin flow theory. It is also

important to note that the Brillouin flow solution is not

satisfying Ampere's law at the cathode or anode. The reason

for this is that the Brillouin flow solution is valid for

only certain anode and cathode currents given a voltage

across the diode. These currents are given by equations

(61) and (62) or (101)-(103). and (124). The values of the

anode and cathode currents in figure 13 come from MASK and

do not satisfy the Brillouin flow restrictions. A nice

feature of the constant density theory is that it will

produce a self consistent flow solution irregardless of the

anode and cathode currents given.

Figure 14 presents the magnetic field for the case of a

semi-trapped MITL flow. Once again, the constant density

theory corresponds more closely to the MASK calculation than

the Brillouin flow solution. The match between the constant

density theory and MASK in figure 14 is not as good as it is

in figure 13 because the density profile in >4 is less
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constant than in 13. One should also note that the

Brillouin flow solution is once again not satisfying

Ampere's law. If it were, it would match the constant

density solution at the anode and the cathode. The reason

they should match is because the same I and I were used ina c

both models. The reason the constant density solution does

not exactly match MASK at the anode and cathode in this case

is because the MASK magnetic field profile seen here

corresponds to one slice across the flow (z=constant). For

the theoretical treatments the cathode and anode currents

were obtained by averaging the values obtained from three

slices.

This concludes the derivation and verification of the

general theory of laminar flows. In the next chapter, the

general theory will be used to derive an electron flow

solution downstream of a PEOS. However, before this is

done, the history and workings of a PEOS will be given.
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CHAPTER 4

PLASMA EROSION OPENING SWITCH

The plasma erosion opening switch (PEOS) has been used

as a fast output switch on pulsed power generators. It can

conduct mega-Ampere levels of current for 10's of

nanoseconds before switching the current to a load in less

than 10 nanoseconds. The PEOS can be used on tera-Watt

level systems for inductive storage, pulse compression, rise

time sharpening, and power multiplication by pulse

compression [27,31]. Indeed, it has many applications, one

of which was mentioned in the introduction to this

dissertation - inertial confinement fusion.

In cylindrical geometries, the switch typically

conducts current through a plasma injected through a screen

in the outer anode onto a central cathode (see figure 15).

When the ion current through the switch exceeds the ion flow

supplied by the injected plasma fill, the plasma erodes away

from the cathode and the switch begins to open [56]. As it

opens, there is initially a significantly higher impedance

across the downstream power feed and load than across the

switch. This mismatch causes electrons to continue

streaming from the cathode to the eroding PEOS making them

unavailable to power the load. As the switch continues to

open (the injected plasma continues eroding away from the

cathode) the impedance mismatch decreases and magnetic
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insulation insures power is not lost across the switch

itself.

However, between the switch and load, electrons

sometimes continue to shunt power from the load as a complex

function of the perturbing PEOS plasma, applied voltage,

currents, and line and load impedances. This potential loss

of magnetically insulated electron flow is a major concern,

because it not only represents a power loss, but it can also

cause the PEOS to not open completely (or close

prematurely). Avoiding the regimes in which losses occur

embodies Chapter 5 and modeling the electron flow in the

loss free region embodies part of this chapter.

Chapter 4 begins with a historical summary of PEO

research. It also reviews the basic physics and phases of

an opening PEOS. Then, the electron flow downstream of a

PEOS during the opening phase is studied. In regimes of

laminar like flows downstream of the PEOS, the geneTal

theory (developed in Chapter 3) is used to derive a laminar

flow solution.

4.1 Historical Summary and Background Physics

This is a historical summary of PEOS research done in

the United States [27]. Other nations such as the Soviet

Union [26], Japan [35]. West Germany [36], etc. are also

involved and contributing in this area, but to a lesser

extent at present. A PEOS was first used in 1977 by Mendel

et. al. of Sandia for prepulse suppression on the Proto I

Generator [37]. In 1981, Stringfield, et. al. [3S] used a



PEOS in conjunction with experiments done on the Pithon

Generator at Physics International Company. Also in 19S,

the Naval Research Laboratory(NRL) became involved with the

PEOS. Collaboratively with C. W. Mendel of Sandia, they

were successful in suppressing the prepulse and preventing

early gap closure on experiments performed on the Aurora

Generator at Harry Diamond Laboratories [39]. The NRL group

realized at this point that a PEOS could possibly be used in

an inductive storage system to multiply the pulsed power by

compressing the pulse in time.

This revolutionary new use of the PEOS was demonstrated

by Meger, et. al. of NRL in 1983 [40]. Experiments were

performed on Gamble I of NRL that showed inductive energy

storage, pulse compression and power multiplication. Gamble

I, running with a PEOS, had peak powers greater than the

traditional maximum peak powcrs predicted using matched

loads. This exciting result led to PEOSs being installed on

the Super Mite Generator at Sandia [41] and on PBFAIl.

Also, high current experiments were performed on the Black

Jack 5 Generator at Maxwell Laboratories [42]. All these

efforts have confirmed he validity of this new use for the

PEOS.

In addition, PEOS work is now beinf done by NRL in the

area of long conduction times (.6 to 1. ricrosecond) [43].

In these efforts, the switch conducts curr-nt for times on

the order of a mir:rosecond before switching the currenT to a

load in abjut 100 nianoseconds. I t has also been Ioted that
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in pinch-reflex ion diode eyperiments performed on Gamble

Ii. ion beam brightness is substantially increased when run

with a PEOS. This is attributed to faster ion turn-on [44].

There are many other PEOS applications. One reported on

recently at the 1987 Plasma Science IEEE Meeting is the use

of PEOSs for repetitively pulsed power applications [45].

In order to more clearly understand the possible

applications and limitations of the PEOS, one needs to

understand the basic physics and phases of opening.

The phases of PEOS opening are shown in figure 15.

These phases and the physics involved are presented in the

remainder of this section. In figure 15, one notes four

phases of PEOS opening which in accordance to NRL are [46]:

a) the conduction phase, b) the erosion phase, c) the

enhanced erosion phase, and d) the magnetic insulation

phase. A brief summary of each phase and the transition

condition from phase to phase is given next.

During the conduction pl.ase the resistance across the

plasma switch is approximately zero. A thin sheath forms

between the cathode and plasma. Ion current (ii) from the

plasma and electron current (i l) from the cathode cross the

sheath in a bi-polar space charge limited fashion. This is

given by:

1/2

i /i = (zme/mi) (125)

where m. is the ion mass and m is Lhe electron mpss. z is
1 e

the ion charge state. The electrons that are emitted from

the cathode (in a SCL fashion) are accelerated from the
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cathode towards the bottom of the PEOS. These electrons

enter the PEOS plasma with a large amount of kinetic energy.

This kinetic energy is transformed into electromagiietic

waves that cause a large number of anomalous collisions or

mixing. The end result of such mixing could be anamolous

magnetic diffusion and wide current channels. Also, the

current would be predominately radial in nature. When

anamoulous collisions are not taken into account fluid code

simulations in I and 2 dimensions [47]. PIC code simulations

[48, 49] and theoretical treatments [50] show non-radial

narrow current channels. However, experiments done at NRL

clearly show wide current channels and predominantly radial

current paths [51]. When anamoulous collisions are taken

into account - with a collision frequency on the order of

the plasma electron frequency - PIC [52] and fluid [53.54]

code simulations match the experiments done at NRL. An

instability responsible for such anamoulous collisions has

been suggested and analyzed by Kulsrud, Ottinger and

Grossman [55].

In general m. >> me , so that the current crossing the1e

switch (i = i -i ) is approximately equal to i (bys el i el

(125)). When i becomes so large that i. is greater than5 1

that supplied by the injected plasma, the conduction phase

ends and the erosion phase begins. This happens when [56]:

ii [ ]l/2 . > 2vlr n ezv. (126)

m PA sc p a

where vd is the plasma drift velocity. n is the plasma

p
number density. 1 is the axial length of the plasma and A is
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the atomic number.

When more ions are pulled off the bottom plasma surface

than the plasma drift can resupply, the plasma erodes away

from the cathode. This is shown in figure 15b. The growth

of the gap (D) between the plasma and cathode (figure 15b)

is given by [56]:

dlJ i. - npZevd 2 rc 1 (127)
dt - n ze2rr 1p c

As the gap grows, current begins flowing through the

load. This leads to partial magnetic insulation of the

space charge electron flow. The magnetically trapped

electrons electrostatically attract ions enhancing the

plasma erosion. This is called the enhanced erosion phase

in which the increased ion current is given by [56.57]:

i = i (2zm /m )I/2 (+1)1/D (12S)1 e e 1

As more current passes through the load, the magnetic

insulation is increased. When the current through the load

is so large that no ( rons reach the anode, the magnetic

insulation phase begins. The minimum required insulating

cu-rent for this as proposed by Ottinger. et. al. is [56]:

2 1/2

crit =1.6 x 8500 (- 1/2 (129)
• ln(r /r c)

This is the standard relation for the critical current

multiplied by a factor of 1.6. The factor is obtained in
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the analysis of a couple calculations done in the 2MV regime

[58] in conjunction with the experimentally measured

impedance behaviour of a pinch reflex diode by NRL. A more

in depth numerical and theoretical analysis is performed in

Chapter 5 to more accurately determine 1 crit

4.2 Magnetic Insulation Phase Electron Flow

When the current through the load exceeds the critical

current (Chapter 5). the electron flow is insulated away

from the anode and the magnetic insulation phase is

underway. Even though the flow is insulated, it can be

quite chaotic downstream of the PEOS. In such a situation

there are various instabilities [11,22,32,59-63] that can

complicate the understanding of the electron dynamics.

However, in the MASK calculations done in this research they

played a negligible role. This could be because the length

of the MITL between the switch and load is so short that the

instabilities do not have a chance to develop.

An interesting aspect of having a shcrt MITL between

the switch and load, is that the magnetic insulation of the

system can be made to occur on a faster scale. This can be

understood by considering an electromagnetic pulse

propagating down an unperturbed MITL. At the pulse front,

electrons flow directly from the cathode to the anode.

Downstream of the pulse head, electrons are bent into orbits

that are governed by the self-limited impedance of the line

(figure 2a). This state continues until the pulse head

strikes the load. If the impedance of the load verses the



73

impedance of the line as a function of voltage is less than

the ratio given in figure 39. then an insulation wave will

propagate from the load end of the system back down the

line. This insulation wave causes an increased magnetic

field that more tightly traps the electron space charge flow

to the cathode (see figure 16). The longer the line or

distance between the load and PEOS the longer, it will take

for this increased insulation of electron flow to take

effect. If the load impedance changes as a function of time

the effect on the PEOS will be retarded proportional to its

distance from the load.

It is interesting to note that in PEOS experiments done

at NRL, it has been found that minimizing the distance

between the PEOS and load reduces current losses and results

in more efficient switching [64]. This is probably

attributable to reduced instabilities and quicker magnetic

insulation in shorter systems.

Before one considers the instabilities of the insulated

flow downstream of the PEOS. the fundamentals of the flow

should be understood. In MASK simulations of a stationary

PEOS, the fundamental properties of the flow have been

examined. The PEOS perturbation launches the electron flow

in a manner consistent with an xg drift. The electron

orbits are often laminar in nature. However, for well

trapped magnetically insulated flows downstream of a PEOS,

the laminar flow introduced by the perturbations can be

overshadowed by the magnetic fields. When this happens, the
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Figure 16. Insulation Wave in a Load-Limited Line.

The insulation wave propagates from the load end
back up the line resulting in a more tightly
trapped electron flow.
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flow enters non-laminar electron orbits that are typically

prolate or curtat.. In this section, the launching

mechanism and examples of laminar and non-laminar flows

downstream of an abruptly varying structure (with and

without ion emission) are presented.

4.2.1 Beam Launching

In MASK simulations, the PEOS often launches the

electron flow (from the cathode and) into the cathode/anode

gap. An example of this is shown in figure 17 which is a

vector plot of the current densities for problem PNO6 (Table

C4 of Appendix C). In simulation PN06, the load is fairly

large and results in a poorly trapped flow downstream of the

PEOS.

In detailed analysis of various MASK simulations, it

appears that the primary mechanism for launching the

electrons is a component of the W drift in the positive

radial direction. The 9xg drift velocity is given by:

=+ (1 r , lO)
e = 41 2 B 2

Since 9 = -B(r);. r must have a significant component in z

for beam launching. Upstream of the structure (PEOS) there

is a -z component of which suppresses launching; however,

downstream of the PEOS i has a +z component. One should

also note that in goipg from a region of no space charge

flow (i.e. an insulator) to one with space charge flow (see

figure 1) there will also be a +z component of r that will

cause partial or complete beam launching. Complete beam

launching refers to launched electron flows that completely
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7igure 17. Example of Beam Launching.

The arrows on this plot indicate the direction and

magnitude of the vacuum current flow.
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leave the cathode.

To obtain a more quantitative idea of this, one may

electrostatically determine the fields for the structure of

interest. The geometry to be considered is given in figure

18. To simplify the mathematics and conserve much of the

physics one can consider the region within the dashed lines

in cartesian coordinates. Physically this is equivalent to

letting r a r go to infinity while maintaining d and D.

The expressions obtained from an analysis similar to the

following, but done in cylindrical coordinates. are

cumbersome.

In cartesian coordinates, the potential (p) at y = D is

V , at y = 0 it is 0, and at infinity the potential isa

bounded. At x = 0, 0 < y d. qp = Vay/d. By standard

techniques it is found that the potential within the dashed

region is:

2V sinX d
p(xy) a sin(NnY)exp(-nX )

n

+ I [sinox] [sinhoy do] (131)0 L 0 11inplD I

where X nD The negative of the gradient of (131) gives

the electric field components:

2 V r [ sinN d + ( , n l] i (~
E = [ d + (-1 n sin(Y)exp(-Nnx)n-1 n

-cosx sinhr ]do ] (132)
Jo sihra]
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2Va Fw n d ++l
Ey a n~l d + (-1) Icos(Nny)exp(-Nnx)

O D n c o dp ( 1 3 3
fo 

asinhlr a(

The magnetic induction can be approximated using Ampere s

law - given the current through the load ( ):
a

iI -^

o a (134)
w

where w is the width of the system.

From (130) v becomes:

r 2 E 2EE + :IIIX x I ^
x 2 2V e a= axIB

Bz

Since the finite Larmour radius effect is often a 2 nd order

effect, it is instructive to write out the drift velocity

components neglecting the terms related to the finite radius

effect. From (132)-(135):

2V a [ sinXnd + ( 1 )n+l]x B coS( nY)xp(- x)
z nn

+ sinx [coshy 1d3 (136)
fo sihra]

2Va [sinX n d n+l 1.V y =--B Xd + ])sin(XnY)exp(-nx )
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o s a

In the limit x - , (136) and (137) go to:

v - a _ (138)x B D Bi

v = 0 (139)Y

This is as expected. Far away from the PEOS perturbation,

the electrons rxg drift only in the x direction (figure 18).

However. close to the perturbation, there is a sizable

+y component of drift (see equation (137)). This y

component of drift has a maximum close to the perturbation

edge. It decreases to zero at the anode and the cathode.

It also decreases exponentially as one moves away from the

perturbation in x. Therefore, after the perturbation

launches the beam, it has less and less effect on the

receeding electron flow. In addition, since the y component

of drift goes to zero at the cathode an initially wider

space charge electron flow ( not as well trapp, d ) will be

more severely effected (Note: x -+ z , y -+ r z - 0 when

approximating cylindrical geometries).

To more realistically see how this works, a MASK

calculation is presented in which the xg launching

mechanism is studied for an insulated system with an ion

emitting structure (similar to an opening PEOS). The study

requires one to first estimate the average components of the

and 9 fields across the flow in the launching region.

From figure 19, the average magnetic induction across and

along the electron stream in the launch region is (the



launched electrons are within the dashed lines of figure

19):

9 : -1.8 ; (Tesla).

From figure 20, the average r component of the electric

field along the flow in the launch region is approximately:

E 5xl 8 ^

E -3 .5x10 r (V/m).r

From figure 21, the average z component of the electric

field is seen to be approximately:

7 -

E z 7.8x1 z (V/m)z

Equation (130) implies that the xg components of drift

velocity are:

E
z 0~,7

vr - 4.3xl0 (m/sec).

E
S- 1.9xlO 8 (m/sec).z 0

From figures 22a and 22b it is clear that the launching

of the beam occurs primarily between z .07 and z .11 (Az

.04 Meters). Using the calculated velocities, it is

possible to estimate the sheath displacement(As).

Az
As - v r = .009 Metersv r

z

This displacement is approximately equal to that predicted

by MASK as shown in figure 22ab. Since one can predict the

sheath displacement by assuming an r4 drift, this implies

the W drift is the primary launching mechanism. Other

calculations were examined with and without ion emission

from their respective structures. In every case the

electron trajectories near the perturbation are consistent

with an W launching mechanism.
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Figure 19. Magnetic Field Within the Launched Beam.

The average magnetic field on the electrons at the right

edge of the PEOS is approximately given by contour level

number 6. The electrons move between the dashed lines

in the general direction of the arrow.
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Figure 20. Electric Field (r) Within the Launched Beam.

The approximate r-component of the electric field

acting on the launched electrons (between the dotted

lines) is given by averaging contour levels 3, 4
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Figure 21. Electric Field(z) Within the Launched Beam.

The average z-component of the electric field in the

launch region is given approximately by contou~r level
number 8 (it bisects the electron flow). The electrons
flow between the dashed lines in the direction indicated

by the arrow.
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4.2.2 Laminar Flows

If the impedance of the load relative to the impedance

of the line as a function of voltage is within approximately

10% of the ratio give in figure 39, the launched electron

beam will propagate in a laminar fashion (see Appendix C.

Tables C4-C9). This of course applies only to the electron

flow downstream of an abruptly varying structure as shown in

figure 23. The flow referred to as being laminar here is

not really laminar in that f 0. However, the electrons

typically travel 10 or more Larmour radii in the z direction

per gyration. Since the excursion in r is close to two

Larmour radii per gyration the orbits are fairly laminar.

In the following these semi-laminar orbits will be

investigated for one MASK run (characteristic of many).

Then using the general laminar flow theory, a flow solution

is generated for laminar electron flows downstream of the

PEOS. The laminar flows are of particular interest since it

is often desirable to run systems with as large a load as

possible and still maintain magnetic insulation (this puts

one into the laminar regime).

The simulation to be considered is MASK run PN06 (see

Appendix C, Table C5). The maximum potential difference

between the anode and cathode is 2MV. There is no ion

emission from the perturbation and the problem has been run

to equilibrium. In figure 23, one can see the typical

serri-laminar electron orbits under consideration (Note that

if the r -ind z axis mad the same qcale the jAt .ould appear
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Figure 23. Laminar Electron Orbits for a Launched Beam.



4 times longer in the z direction). From figure 23. it can

be seen that the electrons move 5 to 6 times further in the

z direction than their excursions in the r direction per

gyration. The orbits are fairly laminar. This is due to

the perturbation modifying the electron orbits and

velocities such that the electric and magnetic field forces

cancel:

Er -yR Vz - O. (140)

If E < v B0 the electrons are accelerated towards the

cathode; however, if E > v 7B the electrons are accelerated

towards the anode. If Er= v B 0 the electrons move in

perfectly laminar orbits. A relative measure of the laminar

nature of the electron flows can be obtained by comparing

the values of Er -vzB 0 at the turning point for different

load impedances. The more laminar flows will have smaller

absolute values for E-v zB O. This will be demonstrated by

examining two MASK simulations.

The outer turning point for the electrons in MASK

simulation PN06 is approximately given by a radius of .045

meters (r m). From figures 24 and 25, E r(r M) -1.6xiO 8 and

5 
P

Bo(rm) -po(5.Ox1O). From figure 26. vz(rm) -
0 z m

2.8x108 . This implies:

E - VzB 1"67x10 7  (141)
r z0

Multiplying this by the electron charge results in a

negative r directed force which causes the electrons to move

towards the cathode. However, it is a relatively small

force as can be seen in comparison to the next simulation.
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The next case is for simulation PNO4 (Apper-dix Cq).

This case corresponds to simulation PN06 in everyway except

that the load impedance is reduced which causes a more

tightly trapped non-laminar electron flow downstream of the

perturbation. The typical electron orbits for simulation

PNO4 are shown in figure 27. The outermost point for the

electron orbits is r = .045 Meters. From figures 2S and 29

the fields are:

Er(rm) -1.375x10 8

B (r ) -. 82

From figure 30. the z component of velocity is v =

S
2.6 7 x10 . So,

E - vzB 0 = +l.xlO 8  
(142)

In comparing equation (141) and (142), the minus r

directed force of (142) is six times greater than that given

in equation (141). Considering this result, it is not

surprising that the electron flow downstream of the PEOS in

simulation PN06 is laminar relative to PNO4.

As mentioned previously, it is often desirable to power

loads with the largest possible impedance, resulting in

semi-laminar flows downstream of abrupt perturbations (i.e.

PEOS). From a series of PEOS calculations (Tables C7-C9) it

is found that the electron density profiles downstream of

the perturbation are often approximately given as follows:

p(r) = 0 r < r < r.

p(r) constant r. < r < r (143)
1 o

p(r)=O0 r ( r <r
0 a
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where r is the cathode radius. r. is the inner radius ofc 1

the launched be,,, r is the outer radius of the beam and.

ra is the anode radius. Since the flow is primarily laminar

the general theory of laminar flows (from Chapter 3) can be

used to predict flow quantities of interest. Since the

density is approximately constant across the flow, the

constant density solution can be modified to give the

downstream electron flow.

The laminar flow solution downstream of a PEOS is given

in equations (143)-(162):

For r < r < r.
c 1

v (r) = J(r) = p(r) = r(r) = f(r) = 0 (144)

"°Ic 0(145)
- 27rr

_ P o
I

A ( 27r ln(r/r ) z (146)

For r. < r < r (see equations (105)-(114)):

2 2
r r.1

f(r) 2 2 ' (147)
r - r.0 1

1 ~2_ 21/

'(r) -c 2 1+c12( )

rlpl(r 2 _ r2) [ c

c1

c



94

j(r) = -IPIv(r) (149)

(r (r -r.-2r ln(r/r.)) (150)

= 4e ii ii
0

(r) = - 2 r r (151)

0

ocAz(r) - 2 K 1 (r) z (152)

2_ 2 1/2
0olc a c _ +

2(r) 1 22r r -2r 2 0 (153)
c

and

Kl(r) = !-(ax 2+bx+Cl) + 1/2 (2a 1/2(ax2 +bX+cl)1/2

11/2 2 12
2( 12 ax2+bx+c 1 /2 +bx+2c,]]2r2+ a~) c1/21ln 1(154)

+ 2ax+b) - C 2  x 2r2

4

where a = c3 /4 b = -c 3 r. . c= c r. + I .and3 3i 1 3 i

12 2
a c 1

c3 - 2 (r - r2)2
C 0 1

For r < r < r (see equations (115)-(120)):

j j2 22

p(r)= 4L (r 2 - r.)(21n(r/r ) + 1) - 2r2ln(r /r.) (155)o i 0 0

' 2 2 ^
() - r (r 2 (156)

e r 0 i
0

r)2Cln(r/r ) + c z (157)

If ~ ~ 2 0 ~ mmm a nna
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1(r) - 2 6r (156)

and

v(r) = p(r) = J(r) = 0 (159)

2r 
2

where c- 2 Kl(r) 2  (160)

The electron density is given by:

2 2 1)1/2
a cI4l = 2 2 (161)

wc(r - r.)
0 1

The radius to the outer edge of the beam is obtained

itteratively from (equations (155) at the anode and (161)):

ro 1 1r - r 27"ec1 .(ri/r ) a exp 5 - a (162)

c (i 2_2)1/21
a c

One may obtain a detailed flow solution for the laminar flow

downstream of the PEOS from these equations given the

applied voltage across the diode (V ) the anode (Ia) and

cathode (Ic) currents, the anode (ra) and cathode (r c)

radii and the inner radius (ri) of the launched beam.

All these variables are easily obtained except the

inner radius of the beam. The inner radius (ri) depends on

the size of the perturbation, diode voltage, anode and
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cathode currents, and geometry. How these relate to the

inner beam radius has not been quantitatively determined.

Oie can estimate r. based on the expected electric fields in1

the launch region as was done in section 4.2.1. The inner

beam radius for the launched beam can be very roughly

approximated by:

(r r )a - r
r. = r + - 2 (163)I c 2

4.2.3 Non-Laminar Flows

It is important to stress that if the impedance of the

load relative to the impedance of the line as a function of

voltage is less than that which gives laminar flows (see

section 4.2.2). the launched beam will form circulating

rings of charge (figure 31a,b). These rings will rxg drift

down the transmission line. The individual electron orbits

are usually prolate and curtate (see figures 1 and 31b).

In highly trapped electron flows, the launched beam

does not come close to satisfying (140) Since the electron

beam curls up, it no longer can completely shield the

cathode from electric fields. Therefore, between vortex

rings (circulating electrons, rxg drifting together down the

line) space charge limited electron emission occurs from the

cathode. Underneath each vortex ring, there is no electron

emission because of the rings shielding effect (see fig

33a). This phenomena is rather irregular and can be most

easily predicted using a 2-dimensional electromagnetic code.

The general theory of laminar flows can not be used in such

a situation.
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CHAPTER 5

MAGNETIC INSULATION THRESHOLD

There are three types of magnetically insulated flow:

1) load-limited. 2) self-limited, and 3) constant-flux

-limited flow (see figure 2). In load limited cylindri'cal

MITLs (see figite 2). there is a maximum load impedance (as

a function of voltage) above which magnetic insulation

degenerates across the load. This results in current being

excluded from the load as shown in figure 32. This loss of

current is undesirable. To determine what the magnetic

insulation threshold is (above which current is lost) for a

variety of perturbTr--d-a--d -"u n' p e r t --u -I-ihu -s-- e

of this Chapter.

Now. it is interesting to note that a load limited MITL

transitions to a self-limited MITL at the point current

begins to be excluded from the load. This is fortunate

because current flows in self-limited magnetically insulated

lines have been treated theoretically in cylindrical,-

coordinates by Wang and DiCapua [33] assuming a Brillouin

flow field. Wang and DiCapua determine the minimum energy

operating point of self-limited MITLs as a function of

applied voltage. Realizing that the normalized enorgy of

the Brillouin flow at the transition point (between

load-limited and self-limited flows) is inversely

proportional to the normalized load impedance allows one to

invert Wang and DiCapuas' results to obtain figure 33. So.
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Figure 32. Current Loss Due to Magnetic Insulation Deterioration.
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Figure33. Magnetic Insulation Threshold for Brillouin Flows.

This is an inversion of Wang and DiCapuas' minimum
energy operating point verses voltage graph (33).
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instead of an energy verses voltage plot, a normalized load

impedance(z 1/Zo) verses applied voltage plot is obtained.

where z I and z are the load and line impedances

respectively. In this work, such a plot is referred to as

the magnetic insulation threshold of the system..

In the following, it becomes apparent that all load

limited lines with trapped flows operate below the zI/Z °

magnetic insulation threshold curve. MITLs operating above

the curve shown in figure 33 experience current loss (as

shown in figure 32). Thus. figure 33 becomes a guide to the

magnetic insulation threshold for infinitely long (no

significant end effects observed in the flow) cylindrical

MITLs with no perturbations. This curve is justified by

detailed MASK calculations in this chapter. In addition,

curves similar to that of figure 33 are computationally

generated in which the magnetically insulated threshold for

finite systems with structures (some structures simulate an

opening PEOS) are presented. Some of these magnetic

insulation threshold curves are justified by using them to

successfully predict experimental results from a Gamble II

PEOS experiment.

5.1 Slightly Perturbed Flow

In this portion of the magnetic insulation threshold

study, data was pulled from approximately fourty MASK

simulations (Appendix C, Tables Cl-C3) of finite MITLs (see

figure 3a). This data is plotted and discussed in the

following.

The simulations typically require about 4 narseconds
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of physical time for the MITL to come to equilibrium. All

the values in Tables Cl-C3 correspond to the equilibrium

condition. Longer MITLs would require more time to come to

equilibrium as discussed in section 4.2 and indicated on

figure 16.

The threshold for complete magnetic insulation is best

represented by a z1 /z vs voltage graph, where z is the

load impedance and z is the transmission line vacuum

impedance. The voltage is that applied across the

transmission line. A typical data point for such a graph is

obtained by doing 3 or 4 short MASK calculations in which

the diode gap (figure 3a) is increased while maintaining a

constant voltage difference across the line. When the

current begins to be excluded from the load (figure 32),

magnetic insulation of the load deteriorates.

Determining when this begins is easily donc if one

plots z /Zo vs the diode gap spacing (d ). This results in

a line of constant positive slope as long as the flow is

trapped. However, when d becomes so large that currentg

begins to be excluded from the load, the slope of z I/Z vs

d goes to zero (where z1 is defined to be Va /I a). Angaa

example of this type of graph is given in figure 34. The

data points come from simulations M107-M424 of Table Cl.

The point at which the slope of the line goes to zero (in

figure 34) corresponds to the magnetic insulation threshold

for the given conditions. The slope goes to zero because

when the load impedance exceeds the self-limited impedance
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Figure 34. Normalized Load Impedance Vs. Diode Gap Spacing.

The point at which the slope of the line goes to zero

corresponds to the magnetic insulation threshold. This

is for the case of V =2xl0 6 volts, ra=.05, rc=.025 meters.
0
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of the line, the current flowing through the line begins to

sho,'t across the line. This means that as one continues to

increase the diode gap spacing more and more current is

excluded from the load. However, the current flowing in the

system (including the short) is given by the self-limited

impedance of the line - which is a constant.

After plotting the data in Tables Cl-C3, figure 35

results. It should be noted that each point on this graph

is found by the technique illustrated in figure 31 and

discussed above. Figure 35 gives the magnetic insulation

threshold in terms of z /z vs voltage plots. The upper

line corresponds to coaxial MITLs with no perturbations. It

indicates that transmission lines opperated below the line

lose no current out of the load. The triangled dashed line

corresponds to MITLs run with space charge limited ion

emission from the anode. Such lines must be run at a lower

load impedance, as compared to the ideal case. for magnetic

insulation to be effective.

It is also clear in figure 35 that varying the

anode/cathode radii had an insignificant effect on the

magnetic inslulation curves. This is consistent with the

flow theory of Wang [33] mentioned earlier. In addition,

the Brillouin flow self-limited impedance curves are

slightly higher than the calculational curves; but. very

close to them. Since all orbits are possible in the MASK

calculations and the flows are predominantly non-Brillouin

(as demonstrated in Chapter 2), it is surprising to see how
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Figure 35. Magnetic Insulation Thresholds for Systems Without
Perturbing Structures.

Cylindrical transmission lines with insignificant ion
emission off the anode lose no current through the
load if operated below the solid line. MITLs with space
charge limited ion flow off the anode lose no current
if operated under the dotted line.
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well the Brillouin minimum energy theory comes to predicting

the magnetic insulation threshold found in the calculational

study for non-perturbed MITLs. The magnetic insulation

thresholds for systems with structures, with and without ion

emission are presented in the following section.

5.2 Disrupted Flows

The data for the following study comes from

approximately sixty MASK simulations (Appendix C. Tables

C4-C9). The MASK mesh for these simulations is given in

figure 3b. All the calculations were run to equilibrium.

Part of these runs (Tables C4-C6) were done with a large

conducting structure in the mesh that did not emit ions.

The remainder of the runs (Tables C7-C9) had ion emission

from the structure and represented PEOSs in various stages

of opening. As a result, the magnetic insulation thresholds

that are obtained apply to extremely perturbed systems.

In these simulations the axial extent and location of

the perturbation has a small effect on the magnetic

insulation properties of the system. The vacuum impedance

of the line in the switch (perturbation) region is the most

important factor governing insulation. In fac*. the vacuum

impedance through the switch governs the insulation of the

system in a very similar fashion as the vacuum impedance of

the MITL in the last section. Because of this, the magnetic

insulation threshold is most appropriately represented with

a z /Z p vs voltage plot, where zp is the vacuum line

impedance under the structure (6 01n(r p/r c)).

Once again, the transition from trapped to untrapped
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flow can be seen in the z1 /z vs d plots. A representativeP g

z /z vs d plot is given in figure 36 for a non-ion
I p g

emitting structure. Figure 37. is a compilation of z1/Z vs

voltage data. The top line, connecting diamonds and

squares, corresponds to the magnetic insulation threshold

for non-ion emitting structures.

The more interesting and crucial set of runs for

understanding a PEOS are represented by the triangles.

circles and crosses connected by the dashed line. In these

runs, the PEOS structure is a space charge limited ion

emitter. If the pulsed power system is run with a load and

at a voltage corresponding to the region below the dashed

line all current passes through the load. If the load and

voltages are such that the system operates above the dashed

line, the system will not be fully magnetically insulated

and current will be lost. In the next section, functions

are generated that fit the data. These functions are then

used in section 5.4 to model a Gamble II experiment.

5.3 Fits to Magnetic Insulation Data

It is desirable to have a continuous function that fits

the data linked by the dashed line of figure 37. To do

this, it is necessary in this study to fit the data for the

magnetic insulation of a transmission line with no

perturbation (see figure 35). This is because more data

points are available for the unperturbed case. Since the

graphs have essentially the same form. the unperturbed case

can be used to give an estimate of the perturbed case in the
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'Ygure 36. Normalized Load Impedance Verses Diode Gap Spacing with

a Perturbing Structure.

The voltage across the diode is 2MV.
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Figure 37. Magnetic Insulation Threshold Data for Systems with
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The dashed line corresponds to the magnetic
insulation threshold for a PEOS. The solid
line corresponds to a MITL with a disruptive
structure.
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low voltage region. The equations governing the fits are:

1 5 + .2 1 + i 5 n l + 1 .9 5 6 7 V)

1) zl/z = .51975 V I [ + 1.567V l, (164)

2) z/z= .4675 V1" I I 1.9567V 1'(165)

where equation (164) gives the magnetic insulation threshold

for simple MITLs and equation (165) gives the threshold for

MITLs with a PEOS. The voltage difference (V) across the

anode/cathode gap is in megavolts. These formula match the

simulation data to within a percent. They are accurate to

within 2% up to 10 megavolts. Extrapolating out to 10

megavolts is made possible by noting the similarities

between the theoretical predictions of Wang [33] and the

MASK simulations of this study. It should be a simple

matter to modify the above relations to give the insulation

threshold out to over a 100 megavolts using the same

procedure. The magnetic insulation threshold for

unperturbed MITLs. as given by equation (164). is shown in

figure 38.

The magnetic insulation threshold for a system with a

PEOS (from equation (165)) is shown in figure 39. Also, in

figure 39, is a plot of the insulation threshold estimate

found and used at the Naval Research Laboratory. Figure 40

shows the corresponding critical currents for magnetic

insulation for the two cases. From figures 39 and 40. the
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Figure 38. Fit to Data Corresponding to Figure 35.

This fit is for the cases run with no structures and
no ion emission.
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Threshold.
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Estimate (ICOLD) of the Magnetic Insulation Threshold.
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NRL estimate is seen to be very close to that obtained in

this work up to about 3 megavolts. For the entire voltage

range, the current rtquired for magnetic insulation is

greater in the NRL theory. This may not be bad in practical

applications because of 0 dependent asymmetries that would

degrade the magnetic insulation. To insure insulation,

larger values of the critical current would be required. In

the next section. equation (165) is used to theoretically

model the magnetic insulation and opening of a PEOS.

5.4 Model Gamble II Experiment

In section 5.3. the threshold for the magnetic

insulation of a system with a PEOS is given (in figure 39).

To verify that this result is consistent with experiment,

the insulation curve of figure 39 (equation (165)) is used

in conjunction with the transmission line code BERTHA to

model a Gamble II PEOS experiment. The experimental and

theoretical generator and load currents are compared along

with voltages and total power output. Since these

quantities are closely tied to the magnetic insulation

phenomena, a close match between the theory and experiment

will justify equation (165).

The experimental set up is shown in figure 41 [31].

The anode is at a radius of .05 meters. The cathode radius

is .025 meters. The PEOS plasma is produced by 3 flashboard

plasma sources. The plasma fills a .1 meter long region of

the cathode/anode gap. The diode is located .05 meters

downstream of the PEOS plasma. The plasma source fires 2
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Figure 41. Experimental Setup for PEOS Shot 3426.
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microseconds before the Gamble II pulse arrives at the

switch. This is to allow for a complete plasma prefill

[31]. The data for an opening PEOS (figure 15)

corresponding to shot 3426 [31] is compared to the

theoretical BERTHA predictions using the new insulation

relation (see figure 39). From figure 42, it is clear that

the theory is doing a good job of predicting the

experimental results. The plasma parameters that give the

properties of the injected plasma correspond to those of the

experiment. However, it is impossible to measure the

quantities precisely. As a result there is latitude for

adjusting them to improve the theoretical prediction given

in figure 42. The theoretical predictions here are similar

to those obtained by Ottinger et. al. in previous studies.

This can be understood by examining figure 39 and noting how

close the NRL and this works insulation thresholds are in

the 0 to 4 megavolt regime - where this experiment was

carried out.
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Figure 42. Comparison of Theory to Experiment for Shot 3426.
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CHAPTER 6

CONCLUSIONS

In Chapters I and 2 the need for and the basic theory

governing magnetic insulation in coaxial cylindrical pulsed

power systems are introduced. Some theoretical work

previouly done in cartesian coordinates is extended to

cylindrical coordinates. In comparing the resulting theory

to MASK simulations it is found that the cylindrical MITL

electron flow is laminar in nature, but has a non-Brillouin

flow structure.

This motivates the derivation of a general relativistic

laminar MITL flow theory in Chapter 3 of which the Brillouin

flow theory is a special case. The new theory is used to

perform an independent derivation of the Brillouin flow

theory. It is subsequently used to generate self-consistent

MITL flow solutions for flows with constant electron density

profiles. Such non-Brillouin laminar flows are found to

have much in common with several short MITL MASK

simulations. In addition, it is found using the general

theory that for all laminar flows (Brillouin or not) the

relativistic factor for the electrons at the sheath edge is

given by: I = I /I .S a c

In Chapter 4. the electron flow downstream of abruptly

varying structures (some simulating an opening PEOS) is

analyzed. It is noted that such structures often launch a

beam of magnetically insulated electrons by means of an xg
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drift. Then the regime in which laminar flows downstream of

the PEOS occur is pointed out. A set of equations, obtained

via the laminar flow theory of Chapter 3. is presented.

These equations give the fields and properties of the

launched laminar flow.

In Chapter 5. the magnetic insulation thresholds for

coaxial cylindrical MITLs are given for MITLs with and

without disruptive structures, and with and without ion

emission. One structure of particular interest simulates a

PEOS. Variations on this structure lead to the magnetic

insulation threshold for a system with a PEOS. The magnetic

insulation threshold is checked for the PEOS by using it in

a transmission line code to predict results from a Gamble II

experiment. The theoretical results compare well with

experimental results. This corroborates the computationally

determined magnetic insulation threshold for the PEOS.

In short, this work presents a new and general theory

governing laminar flows in cylindrical coordinates. This

theory includes the Brillouin flow theory as a special case

(corresponding to no perturbations); however, the general

theory can generate self consistent MITL flow solutions for

perturbed systems. This work also sets forth, for the first

time, the magnetic insulation thresholds for MITLs with and

without obstructions and with and without ion emission. In

addition, the magnetic insulation threshold for an opening

PEOS is given. These thresholds are given simply in terms

of the anode and cathode currents, geometry, load impedance.
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vacuum line and structure impedance, as well as the applied

voltage.

This research can be expanded and applied to various

adJitional arpas. For instance, the tecnniques used to

obtain the general theory of laminar flows in cylindrical

coordinates could be used to extend the theory to other

coordinate systems. One could also use the general theory

to obtain the magnetic insulation threshold for a variety of

non-Brillouin flows. The general theory could also be used

to generate laminar MITL flows for pulsed power systems with

obstructions and impedance mismatches. In addition, the

magnetic insulation threshold curves given in Chapter 5

could be used to design a variety of pulsed power systems.
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APPENDIX A

ALTERNATIVE CYLINDRICAL TRANSMISSION LINE THEORY DERIVATION

In Appendix A, portions of the cartesian theory of

Mendel. as presented in reference [10], are extuiided to

cylindrical coordinates. In this derivation, the function

F(P cz,W) needed in equation (39) arises naturally. This

alternative derivation of equations (43) and (44) in the

text is included in order to add additional insights to the

theory.

This derivation differs from that in the text in that

no Jacobian of transformation is explicitly performed.

Since equations (1S)-(21), and (24)-(35) still apply as

shown in the text they will not be repeated here. What is

needed are the electron density and the current

distributions defined in terms of the canonical momentum and

total energy.

The electron density with canonical momentum between

P and P + dP and energy between W and W + dW at r isPcz an cz cz

(from conservation of charge):

dn(P .W) 21j(P W){ (Al)

dP dWcz err

where Ij(Pcz,W)I is the one way current density. The factor

of 2 comes form realizing that for every charge entering a

unit volume from the top there is one also entering from the

bottom. f is a function of P and W and is given by (see
cz

equation (25)):
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Substituting in equation (35) and eliminating v2with

equation (3) gives:

t =!((W+4M)
2 _ 1(P +a) 2 )1/2 (A2)

Substituting (A2) into (Al) implies:

21j(P c, W)J(4'-+W)dP cdW
uflP r, W) = -2 Z2 1/2 (A3)

ecr((4)+W) -1-(P z+a) )

The current density is (A3) times i(r). If one defines i(r)

in terms of the total energy and canonical momentum (from

equation (25)) the current denstiy is given by:

2(P cz )j(P w)IdP dW
djPcz W)2 2 1/2 (4

r(( +W)cz )

Now, from Poission's equation, equation (A3) and writing

everything dimensionlessly gives:

2 2epi Ij(P cz, )f Wd cz dW

v ~=r((4N-W) 2 --(P +a)2 2) 1/2 (A5)

From Ampere's law, the restrictions on the electron flow

given in section 2.1. equation (A4), and writing the result

in dimensionless form gives:

v2 a=2ep f 1j(Pz.W)(Pz+a)dP dW (6
Vr a=mc r ( W2__pc+a 2 )1/2 (6
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Now, from (A5) and (A6) the electron disrtibution function

is defined to be:

2e o

F(Pmcz W) m Ij(P .W)I (A7)

One should also note that in equations (A5) and (A6) that

the integrals are performed in the canonical momentum and

energy phase space. The variable r is independent of this

space and can be pulled out of the integrals. So from

equations (AS)-(A7) and the definition given in equation

(40) one easily obtains:

* =L(AS)

2 a =- 1 aG(4,a) (A9)
r r Oa

These are the same as equations (41) and (42) which

immediately imply equations (43) and (44).
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APPENDIX B

RELATION BETWEEN THE DENSITY AND VELOCITY PROFILES

In Appendix B. a simple yet surprising relation is

found between the density and velocity profiles for laminar

flows. This relation allows one to obtain a complete

self-consistent laminr MITL flow solution given only the

density profile, or magnetic field profile, or canonical

momentum and total energy profile, etc. In other words, a

complete flow solution is possible given a very modest

amount of information about the flow.

Deriving the relation between the density and velocity

profiles begins by integratingi eq Thon o o! Ie ex

from the cathode to some r less than or equal to the sheath

radius (r ). The result is:

- r (c 2 -a-) = 2G -r (4'2 -a'2 )dr , (B1)
r

c

7

where the subcript c refers to the cathode. This convention

will be used in the following. The subscripts a and m will

refer to the anode and sheath edge radius respectively. One

should also note that G = 0 for laminar flows (equation f

(40)) because:

c( 2W) 22 1-(Pcz+a)21/2
cz = 0 (B2)
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Dimensionalizing (Bi) implies:

E2 ( 2 c 2 r(r -E 2a-a 2 fr 2, E- r,)dE()=c((r-rC)+r-J r r~ B~ dr1 (B3)
r C 2

r-r 2 2 2

r

where the bar signifies an average over r. It is necessary

to write B(r) and E(r) in the following form using Ampere's

and Gauss's laws:

B~r - 2irrdz 27rr

27r r a c 2irr (4

E~)=q.(r) (I a - )f(r)
E~r =e 2irrdz 2ir

= f(r) m p(r)rdr ,(B5)

e r fr
o C

where r and r are the cathode and sheath radii

respectively. p(r) is the density profile. I aand I Care

the anode and cathode currents respectively. v d is the

average drift velocity and equals:

I a-I
v a c (B6)

dr -
pj 7

C
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qi(r) enclosed charge = c )f(r) (B7)

dz - unit length v

vi(r) = average velocity of charge with radius less

or equal to r

v dg(r) (BS)

f(r) 7d r p(r)2irrdr ,r p(r)rdr
vd r
a c C r mp(r)rdr

r
C

f r p(r)v(r)2wrdr

g(r) -I -I f(r) (BIO)
a c

Now, substituting (B4) and (B5) into (B3) yields:

2 2 2 r_2_1
E (r) = c (B - -B ) + 2 2

r c 17 (F )2

12+2(1I )I fg-(ce 2r) 2E 2(r)r2 f 2+(I -I )(fg) 2dr
cc a02c 0 o a C (Bli)

r r
c

For simplicity in the following analysis, this is evaluated

between the cathode (rc) and the sheath edge radii (rm). It

becomes after algebra (with space charge limited flow):

o .102_ 2 )1/2 l+rm(kCm +1M
E(rm = rra c l+r A (B12)

m m m
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where

k SI a+ 1 c (B13)

a c
21

C+ ' (BlI)
1+1
a c

A m dr (B15)
r r

c

D = dr (B16)
r r

c

C = rrn (f(r)g(r)) 2m J2 (B17)
r r

c

Now for laminar flows, from equation (50) and the fact

that Pm of equation (50) equals zero, one obtains an

additional relation for the electric field at the sheath

edge:

E(r) = (12 - 2) (BIS)
m 27r r am

Setting equation (BIS) equal to equation (B12) and

differentiating with respect to the sheath edge radius (r M)

implies after algebra that:

1 g(rm)

f(r ) = 2 . (B19)
M 1 - kg2(rM)

From the derivation it would seem this relation is only

valid at the sheath edge. Nevertheless, in the following it

will be shown to be valid not only at the sheath edge. but

at the cathode and across the entire electron sheath. Once

this relation is shown to be true across the electron sheath

in will be used to relate the density and velocity profiles.
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First, it is shown that (B19) holds at the sheath edge.

At the sheath edge (r ), f(r ) = 1 = g(r ) from equations

(B9) and (BIO). Substituting g(r ) = 1 into equation (B19)

yields:

21

f(r) 2 1 = 1

a c

as expected.

At r = r cg(r ) 0. Substituting g(r ) 0 into

equation (B19) yields f(r c) = 0. At rc. f(rc) does indeed

equal zero as can be seen in equation (B9).

Now it is necessary to show that for laminar flows

(B19) is true in the region r c  r < rm For laminar flows:

-v x = -v~r)B~r) ^ B 0

Substituting (B4) and (B5) into (B20) implies:

f(r) = c d (B21)

c

where vd is given in this case by equation (52). The

velocity v(r) can be obtained from equation (BIO) assuming

(B19) is true across the flow:

f(r) = 1 g(r) (B22)
1 - kg (r)

Now (B22) allows one to write
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g(r) - 2f(r)kf(r)k + (B23)

The derivative of (BIO) gives:

v(r) (g'(r)f(r) + g(r)f'(r))(Ia - (B24)2-wrp(r)(B )

where

f'(r) p(r) r
f'(r)=

{rm p(r)rdr

r
c

g'(r) I [1-1 2r1

2kf 2(r) 2kf(r)(( 2 f (r)k

Therefore,

v(r) r c 1 + ac2 1/22

2w p(r)rdr c

r
c

(I 2 _ 1 2 )f2(r) -1/2
+I ac2 (B25)

c

Now for laminar flows. equation (B21) must be

satisfied. If it is satisfied by the g(r) and v(r) obtained

from assuming (B22) valid across the flow, then the

assumption of (B22) is justified. So, substituting (B23),

(B25), and (52) into (B21) yields:.. . ....... .. . . . - -- . = - m m m m u nm nm
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2 [_ 2 2 1/2

f(r) = 22 [ +)fIr) r

c )f(r) [r

1I 21c 1/2

[ f(r)(I +I ) 2f(r)k + 2f(r)k

1r_12 1/2 1r_2 1 2
+ [ 2 c [ + a 2c f2( .(B26)

c c

Given an anode and cathode current, and f(r) on the

right hand side (RHS) of (B26). the calculated f(r) on the

left hand side (LHS) of the equation must equal the f(r)

substituted into the right if (B22) is to be justified.

This is done for three different currents and two different

f(r)s in Table B1. Equation (B26) not only holds for the

cases given in Table Bl. it holds in general. This

justifies equation (B22) across the flow. Therefore.

f(r) 21 (r) r < r < r (B27)
1-kg(r) c m

Equation (B27) is used in the text to determine a velocity

profile given a density profile.

f(r)RHS I I g(r) Num. Den. f(r)LHSa c _ _ _ _ _ _ _ _ _ _ _ _ _

.5 I .91 .5202592 .4859543 .97190S7 .5
a a

.5 I .51 .6457513 .3779645 .755929 .5
a a

.25 I .31 .4756728 .1956984 .7627937 .25

Table BI. Verification of equation (B26). This is done for

three different anode/cathode current ratios and two

different f(r) values.
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APPENDIX C

MAGNETIC INSULATION THRESHOLD DATA

Tables C1 thru C9 comprise a record of pertinent

magnetic insulation data for 100 MASK simulations. The

simulations were run for coaxial cylindrical MITL

geometries, with and without structures, and with and

without ion emission off the structures. The ion emitting

structures were used to duplicate PEOSs in different stages

of opening. Diagrams of the two fundamental computational

meshes used in this study are given in figures 3a and 3b.

The mesh parameters in 3a and 3b are varied to obtain an

understanding of the relation between the applied voltage,

geometry and magnetic insulation. Tables Cl-C3 correspond

to figure 3a and Tables C4-C9 correspond to figure 3b. The

data from these tables is used to generate the magnetic

insulation threshold curves for figures 35 and 37 in Chapter

5.
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z

Simulation V d I I z
a 9 a C 0

M407-M412 2x106 01 -1.56xi0 5  -1.5xlO 5  .31

M414 .015 -9.6xlO 4  -8.1xlO 4  .5

M416 .032 -7.92x10 4  -4.72xi04 Gl

M417,M419 .023 -7.872xi04 -4.27x04 .61

M418,M420 .018 -8.46x10 4  -6.5xI0 4  .568

M421 .016 -9.3x10 3  .52

M423 .011 -1.324x10 5 .3G3

M424 .02 -7.97x10 4  
- 603

M426 .5x106 .015 -2.753x104 -1.79x1C4 .437

M427 .011 -2.784x104 -1.87x104 A31

M435 lxO6 .016 -4.65x104 -2.672x104 .517

4 4
M436 .018 -4.613xi0 4  -2.463xi0 521

4 4
M437 .014 -4.846xi0 -2.707xi0 496

M438 .012 -5.169x10 - .65

M440 3x10 6  .022 -1.118x10 5  -4.446x104  645

5 4
M441 .024 -1.095xi0 -4.1SSxlO . 659

5 3
M442 .020 -1.154xi0 -7.901x103 625

5 4
M443 .028 -1.093xi0 -4.163x10 660

Table C1 Simulation data for the determination of the

magnetic insulation threshold (r = .05, r = .025). This
a c

study was done without ion emission off the anodc.
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zi

Simulation V d I I z
a 9 a c 0

M450 2xlO 6  056 -2.509x10 4 -1.203x10 4  .577

M451 .030 -2.481x104 -1.136xi0 .5835

M452 .012 -2.623x04 -2.1x1O4  .552

M453 .020 -2.44xi0 4  -l.llxlO .593

M456 .018 -2.45xi0 - .591

M457 lxlO 6  .022 -l.44xi04 -1.44xi04 .501

M458 .006 -l.77xi0 4  -1.77xi04 .408

M459 .016 -1.43x104 -1.43x104 .505

Table C2. Simulation data for the determination of the

magnetic insulation threshold (r = .05, r =.005). This

a C
study is without ion emission off the anode.
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z 1

Simulation V d I I za a c o

M~0 21 6  5 5
MN0. 2x10 01 -1.779x10 -1.365x10 .557

MN04 .018 -1.646x105 -7.37x10 .602

MN05 .014 -1.642x10 5  -7.305x104  6033

M130 2xlO 6  ..014 -1.804xlO 5  - .549

M131 .024 -1.737x0 5  
- .5703

M133 .018 -1.798x0 5  - .551

M135 3x.O 6  024 -2.518x105 - .59

M136 .018 -2.491xlO 5  - .5965

5M138 .014 -2.674xlO - .55

Table C3. Simulation data for the determination of the

magnetic insulation threshold (r = .035. r = .025). The
a c

"MN" calculations were done without ion emission and the

MI" simulations were done with ion emission off the anode.
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z1

Simulation V d I z Flowa a p

PNO5 2xlO 6  .0075 -1.834xi0 5  .54 vortex

PNO4 .008 -1.898x105 .52 vortex

PN06 .009 -1.509x105 .656 laminar

PN07 .012 -1.473x05 .672 laminar

PNO8 .015 -1.469xi05 .674 laminar

PN09 .0105 -1.4SxiO 5  .666 laminar

PNIO 3x1O 6  0105 -2.025x105 .734 laminar

5PNlI .012 -2.023x10 .735 laminar

PN12 .0075 -2.63x105 .565 vortex

PNI3 .021 -2.093xi0 .71 laminar

PN14 4x10 6  .012 -2.569xi05 .7713 laminar

PN15 .0195 -2.633x105 .7525 laminar

PN16 .009 -2.858xlO5 .6933 vortex

Table C4. Simulation data for the determination of the

magnetic insulation threshold for systems with a non-ion

emitting structure(r = .025. r = .05, r = .035. D = .192,

D = .06, Az = .03).P



140

Z 1

Simulation V d I z pflow

PN12 4xl10 6  .0075 -3.615xl10 5  .548 vortex

PN18 .012 -2.573xl10 .7701 laminar

PN19 .0195 -2.639xl10 .7501 1

PN21 3x10 6  .009 -2.074xI10 5  .717 laminar

PN22 .0105 -2.023xl10 .735

PN23 .0135 -2.06x10 5  .7214

PN24 2xI10 6  .0105 -1.476xl10 .671 laminar

PN25 .009 -1.491x10 .665

PN26 .0075 -1.829xl10 .542 vortex

PN27 6x10 6  .0106 -3.56xl10 5  .835 laminar

PN28 .015 -3.623xl10 .82

PN29 .0225 -3.774x10 .788

Table C5. Simulation data for the determination of thc

magnetic insulation threshold for systems with a non-ion

emitting structure (rc = .025, r a .05, r p= .035., D

.105, D = .192. Az = .03).
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Simulation V d I z Flowa g a p

6 5POol 2x1O .01 -1.533x10 .463 vortex

5M482 .016 -1.067x10 .665 laminar

5M483 .02 -1.071xlO .662

Where r .04, D = .07, D = .256, Az = .05.

P p

PN31 4xlO 6  .018 -1.83x10 5  .7751 laminar

5PN32 .012 -2.492x10 .569 vortex

PN33 " .024 -1.846x10 .768 laminar

Where r = .04, D = .06, D = .192, Az = .03.P P

PN35 4x.6 018 -1.753x105 .647 vortex

11 5PN36 .012 -2.525x10 .449 vortex

5PN37 .024 -1.469x10 .772 laminar

PN38 .030 -1.48xi05 .766

Where r = .045, D = 06, D = .192, Az = .03.P P

Table C6. Simulation data for the determination of the

magnetic insulation threshold for systems with a non-ion

emitting structure (r = .025, r = .05).c a



142

z 1

Simulation V d I z Flow
a 9 a p

P1321 6  5
P103 2xlO 0075 -1.868x05 53 laminar

5P104 .009 -I.844xi0 5372

P105 .0105 -. 84x1O 5  .538

P106 .0135 -i.72x05 .575

6 5P108 3xi0 0075 -2.664x105 558 laminar

P109 .009 -2.53xi05 .5S7

Pilo .0105 -2.503x)0 594

P1341 6  5
P113 4xlO 0075 -3.492xi0 567 vortex

5P114 .009 -3.222xi0 615 laminar

P115 .0105 -3.165x105 626

5PI16 .012 -3.148x105 629

Table C7. Magnetic insulation threshold data for an ion

emitting PEOS like structure (r = .025. r = .05. r

.035, D = .06, D = .192, and Az = .03).P
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zI

Simulation V d I z Flowa a p
P1731 6  5

PI17 3x16 0075 -2.567x105 58 laminar

PI8 .009 -2.498xi0 5  595

5PI19 .0105 -2.491xi0 5966

P1141 6  5P121 4xlO 009 -3.165xi0 626 laminar

P122 .012 -3.151xl05  629

P123 .0135 -3.13xi0 5  .633

P1661 6  5
P126 6xlO 012 -4.376xi0 679 laminar

P127 .009 -4.454xi0 5  667

Table C8. Magnetic insulation threshold data for an ion

emitting PEOS like structure (r = .025, r = .05, r p
c a p

.035, D = .09, D = .192, and Az = .03).
p
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z 1

Simulation V d I z flowa a p

P19 x1 6  5
P.29 4x10 021 -2.247x10 .631 laminar

P130 5
P30 " .015 -2.244x10 .632

P131 5
PI31 .012 -2.244x10 .632

P14 x1 6  5
P.34 6xlO 012 -3.145x10 .677 laminar

P136 5
P136 .027 -3.128x10 .68

Table C9. Magnetic insulation threshold data for an ion

emitting PEOS like structure (r = .025, ra = .05, r

.035, D = .09 ,D = .192. Az = .03. r = .04).P p
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